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1. Introduction

In the past few years, the paradigm of computing has shifted: Embedded systems have
become omnipresent, enabling a vast variety of different mobile applications, ranging
from electronic payment and contactless identification to advanced car control systems.
Due to the specific requirements of a given usage scenario, the details of the actual
implementation heavily depend on the respective application.

In many cases, however, it is vital that the system fulfils certain security targets, i.e.,
the privacy of the exchanged data, the authenticity of a participant or the integrity of
the stored information. Thus, cryptographic techniques are applied to meet these re-
quirements. In turn, adversaries trying to bypass these protections rely on some form
of cryptanalysis, exploiting weaknesses in any part of the realisation. In this thesis, we
address the susceptibility of embedded systems towards the important class of imple-
mentation attacks.

1.1. Implementation Attacks

Before reviewing device types that are common targets, we focus on the class of attacks
we aim to examine. Generally, implementation attacks cover all forms of attacks against
cryptographical devices relying on the physical realisation of the algorithms in hardware
or software, rather than exclusively on abstract mathematical properties and resulting
theoretical weaknesses. A classification according to [Paa06| is given in Fig. 1.1.

A Passive attack or Side-Channel Analysis (SCA) is conducted by monitoring the
device while it performs a cryptographic operation, e.g., by recording data-dependent
variations of the execution time (¢iming attack), the power consumption (power analysis)
or the Electro-Magnetic (EM) emanation (electro-magnetic analysis), respectively. In
contrast, active attacks imply the (permanent or temporary) modification of any part
of the physical implementation, e.g., to gather information on the internal processes
(reverse engineering) or to cause incorrect execution by means of Fault Injection (FI),
enabling further analysis and the recovery of cryptographic secrets.
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Implementation Attacks

V wﬁ

Side-Channel / \
/ \ Reverse Fault

Timing Power Analysis Engineering  |njection
Templates Simple Differential

Power Analysis Power Analysis

Figure 1.1.: Classification of implementation attacks.

1.2. Embedded Systems

Having specified the considered type of attack, we briefly present some important in-
stances of embedded systems that are of particular interest due to their widespread use
and flexibility with respect to possible applications.

1.2.1. Microcontroller

A microcontroller is a user-programmable processor extended by special on-chip hard-
ware for typical embedded use-cases, such as serial or parallel communication, measure-
ment, control or the acceleration of cryptographic operations, e.g., data encryption. In
contrast to processors employed in desktop computers, microcontrollers are often opti-
mised for low power consumption and minimum cost.

Therefore, the hardware implementation is constrained with respect to the chip area
and consequently the number of available gates. Microcontrollers thus often feature a
small internal register and bus width, e.g., 8 or 16 bit and run at clock frequencies much
lower than those of modern general purpose processors.

Due to their flexibility, microcontrollers have become a popular choice for many tasks
in security-sensitive mobile applications, such as car immobilisers, driving control sys-
tems or physical access control solutions. Consequently, the implementations usually
include cryptographic means to protect against, e.g., counterfeit (cloning) or unautho-
rised access. Yet, past experience [EKMT08| has shown that the countermeasures with
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respect to implementation attacks are often insufficient or missing. Hence, the evalua-
tion whether such attacks are feasible is mandatory to guarantee the long-term security
of any newly developed system.

1.2.2. Smartcard

A smartcard is a device specifically designed to protect sensitive information and its ex-
change in high-security scenarios, e.g., payment or the identification of individuals [BSI].
The actual chip is usually contained in a plastic package, as specified in [[SO03|. Smart-
cards often incorporate a microcontroller to realise control and interface logic and addi-
tional hardware accelerators for common cryptographic primitives (e.g., symmetric and
asymmetric ciphers or hash functions) with appropriate countermeasures against imple-
mentation attacks. Note that, however, the provided level of security again depends
on the maximum tolerable cost of the device and thus heavily varies with the targeted
application.

1.2.3. Radio Frequency ldentification

Radio Frequency Identification (RFID) covers all forms of — most often strictly con-
strained  devices that are attached to some physical entity and wirelessly respond to
a reader to provide information regarding this entity. An RFID device is often called a
tag.

Popular use-cases include the tracking and identification of assets on different levels,
i.e., marking a collection in a container or individual objects, which is usually realised
with Ultra High Frequency (UHF) tags operating in the range of approx. 400 MHz up to
3 GHz. These systems today rarely involve cryptographic protocols and are not explicitly
considered in this thesis.

Rather, we focus on High Frequency (HF) and Low Frequency (LF) systems running
at 13.56 MHz and 100 - 150 kHz, respectively. Especially HF devices are a popular
choice for mass-market applications like contactless payment and public transport fare
collection. The first generation of these tags bases on proprietary ciphers that turned
out to be vulnerable to conventional mathematic cryptanalysis [CNOO08|. Newer devices
apply established algorithms which are assumed to withstand analytical approaches,
yet, implementation attacks can enable an adversary to break this protection and en-
danger the system security. In the context of HF RFIDs according to the ISO 14443
standard [iso0la, iso01b], the tag is referred to as the Prozimity Integrated Circuit Card
(PICC), while the reader is called Prozimity Coupling Device (PCD).

Considering that most RFID tags are passively powered, i.e., draw their energy from
an EM field generated by a reader and must be available at minimum cost, they are
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extremely limited with respect to chip area and processing capabilities. Hence, realising
countermeasures against implementation attacks — which often increase the circuit com-
plexity — can be infeasible or at least heavily constrained in many practical scenarios.
Thus, when testing a given system, the according attacks have to be actually carried
out in order to estimate the provided level of security.

1.3. Outline of this Thesis

This thesis is organised as follows: First we give an overview over the current research
status with respect to implementation attacks in Chap.2, where we both focus on
power/EM analysis and fault injection attacks (Reverse engineering and timing attacks
are not within the scope of this thesis). For fault injection attacks, a structured survey
with respect to practical (i.e., ways to induce erroneous behaviour) and theoretical as-
pects (i.e., methods to exploit faulty operation results in order to recover cryptographic
secrets) is provided. We introduce combined attacks which can circumvent countermea-
sures that protect against individual attacks, however, fail when several methods are
applied simultaneously.

In Chap. 3, we present our new, unified framework for realising side-channel analysis
and fault injection, supporting combinations of both approaches. Here, special emphasis
is placed on the development of a flexible and low-cost environment to demonstrate that
a variety of proposed attacks can be put into practice with limited budget.

Currently, there is a lack of practical results on the feasibility of implementation at-
tacks on real-world devices, as the research is often performed by commercial laboratories
and not available to the community. To fill this gap and obtain concrete estimates on the
protection level of popular products, we apply the developed framework for the analysis
of several real-world devices in Chap. 4.



2. A Survey of Side-Channel

Analysis and Fault Injection
Attacks

To illustrate the scope of the framework developed in this thesis and to present the
fundamentals for the practical attacks given in Chap. 4, we start with an overview over
side-channel analysis and define important terms and methods. Then, we describe the
current state of research with respect to fault injection, covering both physical aspects
and the algorithms needed to actually exploit an induced fault. In the following, we
often refer to the device being analysed and attacked as the Device Under Test (DUT).

2.1. Side-Channel Analysis

As introduced in Chap. 1, side-channel analysis includes all techniques that allow for
the analysis of a (cryptographic) algorithm by observing the behaviour of its physical
implementation. Usually, the aim is to recover a cryptographic secret (i.e., a key),
however, the methods may also be used to obtain other information, such as memory
content.

In this thesis, we focus on power analyis, i.e., target DUTs where the side-channel
information is recorded by (directly or indirectly) monitoring the power consumption of
the device. The measured timeseries is usually referred to as power trace (or trace). More
specifically, we address Simple Power Analysis (SPA) to profile the DUT and Differential
Power Analysis (DPA) to recover the key. Other approaches such as templates or timing
attacks are not explicitly covered, however, the framework described in Chap. 3 basically
also supports such methods.

2.1.1. Simple Power Analysis

According to [MOPO07|, SPA attacks directly interpret single power traces to gain insight
into the internal workings of a cryptographic device or to obtain the key. If the power
consumption of an algorithm heavily depends on the key bits (due to different instruc-
tions being executed) as for instance in a straightforward implementation of a binary
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exponentiation algorithm [KJJ99], the key can be recovered by observing the different
patterns occuring when processing a zero or one, respectively.

On the other hand, SPA can be utilised to profile a device prior to performing other
attacks. E.g., it is often mandatory to identify features in a trace that indicate the
start of a cryptographic operation, allowing to narrow down the region that is subject
to further analysis.

2.1.2. Differential Power Analysis

To exploit statistical dependencies of the trace on the processed data, Kocher et.al. pro-
posed to execute a cryptographic operations several times with varying inputs, followed
by a statistical test to reveal the correct key candidate [KJJ99|. If the side-channel in-
formation is obtained by measuring the EM emanation, the attack is called Differential
FElectro-Magnetic Analysis (DEMA) [Car05].

For differential attacks, each key candidate K , 0 < s < S, where the number of
candidates S should be small', is input to a prediction function d (K, x;), establishing
a link between the [’th input data x; and the expected power consumption for each
key candidate K. Often, d predicts the power consumption of the output of an S-Box
after the key addition, in many cases modelled based on the Hamming weight, i.e., the
number of ones in a data word, or based on the Hamming distance, i.e., the amount of
toggling bits in a data word. The recorded trace of length N is denoted as t;l (n).

The original test described by Kocher assumes that d (K, x;) € {0, 1}. Fix one key
candidate K and group the traces according to the value of the prediction function into
two sets Sk, 4—0 and Sk, 4=1. The means of the two sets are given as

1

mo(Kg,n) = ——— t(n
0( ) |SKs,d:O| ) Z ( )

tE€SKs, d=0

1 -

mi (Kg,n) = —— t(n
1 ( ) |SKS,d:1| ) Z ( )

t€SKs, d=1

Then, consider the difference of means
Appa (Ks, n) = myy (K, n) —my (Ks, n) (2.1)

By identifying K, for which [Appa (K, n)| contains the peak with the highest am-
plitude, the correct key candidate can be revealed, given that enough traces have been

1 This is always the case when attacking single S-Boxes with few in- and outputs
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acquired and that there exists a link between the side-channel leakage and the prediction
based on the input data.

Correlation Power Analysis

Correlation Power Analysis (CPA) [BCO04| generalises the original approach of DPA
and enables the use of prediction functions with a real-valued output, i.e., d (K, x;) €
R. The method essentially relies on calculating the normalised correlation coefficient
between the predicted and recorded values for one point in time n and a fixed key K,
as given in Eq.2.2.

—

g (txz (n) — mf(n)) (d (Ks, m1) — myx.))

2 2
Tin) T d(K,)

Acpa (K, n) = (2.2)

with mg,,), max,) denoting the sample means and at%(n), 05( k,) the sample variances

of the respective timeseries. Plotting Acpa (K, n) for all n yields a curve indicating
the correlation over time that features significant peaks, if K is the correct key guess,
and has a random distribution otherwise. Thus, by iterating over all K, and analysing
the resulting Acpa (K5, 0)...Acpa (K5, N — 1), the secret is recovered, again under
the conditions mentioned for DPA.

2.2. Fault Injection

In contrast to side-channel analysis — which is a passive technique — fault injection
involves active manipulation of a DUT to enable computations that eventually lead to
the recovery of a cryptographic key. The initial research on the physical aspects of fault
injection originates from investigations of semiconductor manufacturers to evaluate the
reliability of their products [BP03|; the idea to attack cryptographic devices by means
of inducing faults during the appropriate computations is relatively new [BDL97|.

2.2.1. General Parameters of Fault Injection

Before detailing the diverse methods to inject faults in ICs, we identify general properties
of faults in order to provide a model that helps to characterise the requirements for
concrete attacks.

Permanence If a fault injection permanently alters the DUT, for instance, destroys a
hardware part or overwrites the firmware, it is said to be permanent. Otherwise,
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if the fault only affects the outcome of a limited number of computations, it is
non-permanent or transient.

Precision of Time Position Subsequent attacks may require the fault to occur either
at a random (indeterminate) position, within some region or at a precisely deter-
mined point in time.

Number of Affected Bits A fault is single-bit if it alters exactly one bit, or multi-bit,
if it changes > 2 bit, e.g., the state of a complete register.

Effect The induced modification can become manifest in a bit flip, i.e., logic values are
inverted, a fired state, i.e., logic values are tied to 0 or 1, or inconsistent behaviour
of the DUT. In the latter case, the fault injection causes inconsistencies in the
state of a device by affecting a distinct part of its digital control logic. A common
example of this effect is the skipping of instructions on a microcontroller, e.g., due
to the instruction pointer being incremented but the current instruction not being
executed.

2.2.2. Types of Physical Faults in Integrated Circuits

There is a variety of ways to trigger faulty behaviour in ICs, differing (amongst others)
in complexity, cost, effectiveness and the possible effects caused by the fault. In the
following, we give a brief survey of methods that have been proposed in the literature.

Microprobing

One of the most direct yet complicated fault injection methods is to de-package the
silicon die and contact a specific circuit path using microprobes. As detailed in [KK99],
the attacker is then able to exactly monitor the waveforms present on this wire and can
actively modify the value, for instance by short-circuiting it to ground.

Due to the immediate access to the DUT, virtually all types of faults can be injected.
Moreover, the method allows for reverse engineering of the circuit. However, the needed
equipment is expensive (in [KK99|, the authors estimate a cost of 10000 - 100000 $)
and requires considerable skill and experience to be handled efficiently. Additionally,
the invasive nature of the attack makes it unusable in scenarios where permanent, ob-
vious physical modification of the DUT is detectable, e.g., for identification or payment
smartcards. For these reasons, we decided not to further detail on microprobing attacks
in this thesis.

Temperature Variation

Since the characteristics of circuit elements vary with temperature, an Integrated Circuit
(IC) only works correctly within the temperature range specified by the vendor. Thus,
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cooling or heating the DUT and operating it outside of its maximum specifications can
lead to faulty behaviour. [HCNT04]| states that high or low temperature especially affects
memory cells and can cause random modification of Static Random Access Memory
(SRAM) cells or disable read/write operations of Non-volatile Memory (NVM), i.e.,
Flectrically Erasable Programmable Read-Only Memory (EEPROM) or Flash. Generally,
exact timing of the fault is complicated due to the limited thermal conductivity of the
involved materials, e.g., the IC package or the die itself. Besides, most of the fault
parameters mentioned in Sect.2.2.1 are hard to control with this approach, limiting
the possible application scenarios. In the current version of our setup, temperature
variations can only be applied manually, i.e., using coolant spray or heating devices.

Optical Effects

By exposing the circuit to white or laser light, electron-hole pairs are created that can
cause current flow at p-n junctions [Sch08, HCNT04| of semiconductors, resulting in
changes of logic levels in the affected region of the IC, e.g., switch a transistor. By
applying a mask or optical lenses to focus a small area, optical faults allow for precise
targeting of certain parts of a circuit, down to the single-transistor level [WWO05|, with
fine control over the fault effect.

Note that inducing optical faults is a semi-invasive attack, as the plastic packaging
of the chip has to be opened mechanically or by etching, which is straightforward for
standard IC packages, e.g., Dual Inline Package (DIP) or Small-Outline Integrated Cir-
cuit (SOIC), but can become infeasible for a common adversary in the case of highly
sophisticated smartcards.

Variation of Power Supply

Temporarily increasing (positive glitch) or reducing (negative glitch) the supply voltage
of an IC to a certain level is a well-established method to inject faults [GT04, FML*03],
particularly with regard to the skipping or misinterpretation of processor instructions.

As the power is supplied via an external pin (for the case of most embedded device)
or the surrounding EM field (for contactless (RFID) devices), the fault injection path is
easily accessible, allowing for non-invasive attacks. However, at the same time, this single
entry point can be disadvantegous from an attacker’s point of view: Countermeasures
such as monitoring or filtering the supply voltage before it enters the core of the circuit
are relatively inexpensive, because they only need to be implemented for one isolated
section of the IC.
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Electro-Magnetic Pulses

Transients of the EM field cause induction of currents in conductors and can thereby
change logic levels present on an IC. In contrast to power glitches, the fault injection
is not performed over a single wire. Rather, the fault can affect any part of the DUT,
making it harder to prevent and detect than variations of the supply voltage. On the
other hand, the actual outcome is hard to predict and reproduce, since the location and
extent of the fault depends on the exact position in and the form of the EM field, which
in turn is subject to environmental conditions.

Variation of an External Clock

For devices with external oscillators, i.e., for which manipulations of the clock signal are
feasible, slightly modifying the clock period for one or few (half-)cycles may lead to data
corruption [KK99|. Due to different delays of distinct circuit paths, values that take
longer to propagate (e.g., because they are transported over the critical path?) may not
be handled correctly in the following clock cycle.

2.2.3. Methods for Fault Injection Attacks on Cryptographic
Algorithms

In the following, we give an overview of the current research status for attacks on crypto-
graphic systems that base on fault injection. We focus on the most important algorithms
for asymmetric and symmetric cryptography, assessing their vulnerabilty to faults.

Since the presented attacks are initially theoretical and thus usually abstract the
physical process of fault injection by specifying a fault model, the actual method for
causing the fault is left open in this section. Rather, we try to systematise the great
number of publications in this field by characterising:

1. The targeted computation, i.e., the part of the algorithm that is manipulated by
means of fault injection,

2. the fault model following Sect. 2.2.1,

3. the adversary model, i.e., the type and number of cryptographical operations an
attacker must be able to execute and

4. the attack, given as a pseudo-code algorithm in Appendix A.

2The critical path is the register-to-register path with the largest delay and thus limits the maximum
clock frequency
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Bellcore-Attack on RSA with Chinese Remainder Theorem Optimisation

The first fault injection attack on cryptographic algorithms was developed by Boneh et.
al. at the Bellcore security and cryptography research group [BDL97|. The attack targets
an implementation of RSA using the Chinese Remainder Theorem (CRT) optimisation
that we briefly review in Alg. 1.

Algorithm 1 RSA Signature Creation with CRT Optimisation.

Require: Private system parameters:
Private primes p, ¢ € IP, private exponent d € Z,(,), CRT parameters: d, = d
mod p, d, =d mod ¢, ¢, =¢' mod p, ¢, =p~' mod ¢

Require: Public system parameters:
Modulus n = pg, public exponent e = d~! mod ¢ (n), e € Zy
Require: Plaintext x € Z, to be signed

¢ mod n

Ensure: y ==
: Tp <2 mod p
: Tq 2 mod q

D Yp xﬁp mod p

: Y [epa] yp + [eqpl Yy mod n

1

2

3

dg

4: Y, + x4 mod q
5

6: return y

In contrast to many approaches for other cryptographic algorithms (of which we
present some in the following), the requirements with respect to the precision and the
effect of the fault are very low — it may occur during one of the two exponentiations
and affect the outcome arbitrarily, i.e., does not depend on the precise modification of
certain bits. As such, it is a very powerful attack.

Targeted Computation This attack targets one of the exponentiations in
Alg. 1 (line 3 or 4) and recovers the secret exponent d

Fault Model Injection of an arbitrary, non-permanent fault in a
region belonging to either exponentiation
Adversary Model The adversary is able to request the signature of a

freely-chosen message x at least two times and receives
the corresponding signature. He also knows the public
system parameters

Attack The attack steps are given in Alg. 6 in Appendix A
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Lenstra-Attack on RSA with CRT Optimisation

Lenstra noted that the idea of the Bellcore-Attack can be further enhanced [Len96], no
longer requiring both a faulty and a correct signature. Thus, the approach also works for
implementations where multiple signatures on the same plaintext cannot be acquired,
e.g., in randomised authentication protocols etc. Apart from that, the attack has similar
requirements as the Bellcore method.

Targeted Computation This attack targets one of the exponentiations in
Alg. 1 (line 3 or 4) and recovers the secret exponent d

Fault Model Injection of a arbitrary, non-permanent fault in a re-
gion belonging to either exponentiation
Adversary Model The adversary is able to request one signature of a

known message x and receives the corresponding sig-
nature. He also knows the public system parameters
Attack The attack steps are given in Alg. 7 in Appendix A

Attack on RSA without CRT Optimisation

After the discovery of the susceptibility of CRT-optimised RSA, the basic idea was
extended to several other public key systems, including a standard RSA signature gen-
eration. In [BDHT97|, a method for recovering the private RSA key d is proposed, based
on a fault in the exponentiation algorithm. Note that, however, the prerequisites with
regard to the actual fault parameters are very strict, as exactly one bit of the private
exponent d must be altered during the algorithm run.
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Targeted Computation This attacks targets one bit in the binary representa-
tion of d = (d;_1 ... dy dy), with length [

Fault Model Injection of a bit flip, non-permanent fault on exactly
one random bit of d
Adversary Model The adversary is able to request one signature of a

freely-chosen message = and receives the correspond-
ing signature. He also knows the public system pa-

rameters
Attack The attack steps are given in Alg. 8 in Appendix A
Notes The attack returns one bit of d. It can thus be used re-
peatedly with varying parameters to recover the com-
plete key

Elliptic Curve Cryptography

Especially in the context of resource-constrained embedded systems, RSA is often infeasi-
ble due to the long operands (e.g., 1024 ... 2048 Bit) necessary to guarantee a certain se-
curity level . A popular alternative is Elliptic Curve Cryptography (ECC), which provides
equivalent security at lower computational cost with, e.g., 160 Bit operands [Kra04].
However, as for RSA, several fault injection attacks have been proposed to recover the
private key. In order to explain those, we first review the basics of ECC.

Given a field F, the points of an non-singular Elliptic Curve (EC) E over F are the
solutions (z, y) to

y2 + a1y + azy = >+ a2x2 + asx + ag

together with the identity point oo, given that the coefficients aq, as, as, as, ag € F
yield a non-zero discriminant (for details, cf. [CFAT06]). Note that in many practical
applications, a simplified formula with a; = as = a3 = 0 and a4 = a, ag = b is used.

One can define point addition P; + P, with P;, P, € E and, based on this, scalar
multiplication d - P, with d € Z such that the points on E form a group. The addition
formula is e.g. given in [CFAT06], but in the context of fault injection, it is sufficient to
know that addition does not depend on ag in any coordinate representation.

If one considers points P’ = (2/,4') € F? that not necessarily lie on E but one
still uses the addition formula with the coefficients for E, the resulting operations are
called pseudo-addition and pseudo-scalar multiplication and denoted as @ and ® in
this subsection. Using the coefficients of the original curve E, a new coefficient ag is
computed as:
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2 —a4iL’/

! 2 /.1 / / /

g =Y " +amxy + asy — 2 — ayx

Then, the coefficients ay, as, as, a4, ag define another non-singular elliptic curve E’ |
for which

d@ P =d- P}, (2.3)

holds, with d € Z and P’ = Py, d- P}, are points on E’. The important consequence of
this fact is that the scalar multiplication starting with an invalid point on F is equivalent
to a normal scalar multiplication on another curve E'.

Cryptosystems based on EC usually rely on the hardness of the Discrete Logarithm
(DL) problem in the point group of E, i.e., given points P, d - P, determining d is
computationally costly. Equation 2.3 shows a way to map this problem on F to another
curve E' which might have properties that allow for faster computation of the discrete
logarithm, i.e., which is cryptographically weak.

In [BMMO0], the authors describe two variants of a fault injection attack on the scalar
point multiplication algorithm for ECC signatures, each time for a basic implementation
and practical protocols, i.e., EC ElGamal and the Elliptic Curve Digital Signature Algo-
rithm (EC DSA). Since the latter are virtually extensions of the already rather involved
basic case, we focus on the idealised scenario, i.e., do not assume a concrete protocol, in
order to explain the idea of the technique.

Fault Injection at the Start of the Multiplication

The first variant assumes a modification of the base point P before the scalar multipli-
cation d - P is carried out. As mentioned above, the attack can be extended to work for
real-world applications, in which complete points are usually never output.

Targeted Computation This attacks targets the register holding the base point
P that is input to the multiplication algorithm

Fault Model Injection of a single-bit flip, non-permanent fault in
the base point P before the multiplication
Adversary Model The adversary is able to request the multiplication of

a freely chosen point P with the private key d multiple
times and receives the result d - P
Attack The attack steps are given in Alg.9 in Appendix A
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An interesting aspect is that the attack solely relies on a property of the input point.
Thus, in systems which do not check the validity of P, the fault can be injected simply
by choosing a P’ not on E. Only if the implementation explicitly verifies the validity
of the input point before performing the multiplication, a physical fault injection has to
be applied to alter the point after the check.

Fault Injection during the Multiplication

Besides, the authors also sketch an algorithm which does not require the input to be
faulty, but rather allows for inducing faults during the multiplication. It assumes the
use of the binary double-and-add algorithm given in Alg. 2 for the scalar multiplication.
For explanatory reasons, we also indexed the intermediate values ) and H. In real
implementations, not all subsequent intermediates but only the current states are stored.

Algorithm 2 Right-to-left double-and-add algorithm.
Require: Elliptic curve F

Require: Point addition + on E with identity point co
Require: Input point P on E
Require: Scalar d € Z and its binary representation (d,_; ...d; dy), with length n
Ensure: ), =d- P
1: Hy«— P
2: QO — o0
3: fori+—0...n—1do
4: if d; == 1 then

5: Qiy1 — Qi + H;
6: else

7 Qi1 — Qi

8 end if

9 Hiyw«— H;+ H
10: end for

11: return @,

The number of faulty outputs required and the computational effort for Alg. 10 is
substantially higher than Alg.9, however, the timing requirements are relaxed. Still,
both the realisation of the fault injection and the processing to recover the private
exponent require considerable effort. With high probability, the recovery algorithm
outputs only one candidate for a certain number of bits of the private key. To obtain
the full key, the algorithm can then be used iteratively, with the steps belonging to the
already known bits removed from the result of the multiplication, until the complete key
has been determined.



16 A Survey of Side-Channel Analysis and Fault Injection Attacks

Targeted Computation This attack targets the register holding an intermedi-
ate result during the multiplication

Fault Model Injection of a random, single-bit, non-permanent fault
in the intermediate register ) of the multiplication al-
gorithm 2 within a region of m successive iterations.
The attack can also be adapted to work for the inter-
mediate register H

Adversary Model The adversary is able to request the multiplication of
a freely chosen point P with the private key d multiple
times and receives the result d - P

Attack Alg. 10 in Appendix A returns candidates for the most
significant bits of d.

Differential Fault Analysis of the Data Encryption Standard

The methods to attack symmetric cryptographic systems are initially similar to those
described for public key algorithms and usually exploit relations between faulty and cor-
rect outputs. For the Data Encryption Standard (DES) [FIPb|, Shamir et. al. proposed
an attack on the final round (cf. Alg.3) [BS97|.

Algorithm 3 Final round of DES.
Require: 64 bit DES state register (L;5, Ry5) after round 15
Require: 48 bit subkey Kig

Require: DES permutations IP~'(-), Fap(-), P(-) and the S-Box layer S (-) formed
by S-Boxes 57 ... Sy

1: Round function: f (R, K) = P (S (Exzp(R) ® K)) with R € {0, 1}**, K € {0, 1}*®
2: Rig + L1s @ f (Ris, K1)

3: Lig — Ry5

4: Ciphertext: y « I[P~ (Lyg, Ry)

5 return y

The attack requires a single-bit error in the input of one S-Box, causing > 2 output
bits to toggle. To recover the subkey for all S-Boxes, several plaintexts have to be sent,
with the bit position of the fault slightly varied to affect all S-Boxes and consequently
recover all subkey bits.
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Targeted Computation This attack targets the right half of the DES state reg-
ister before the final round 16, summarised in Alg. 3.
See [FIPb] for further details

. Fault Model Injection of single-bit flip, non-permanent fault at the
moment of the register update for R15
Adversary Model The adversary is able to request the encryption of

freely-chosen messages x ~ 200 times and receives the
corresponding ciphertexts
Attack The attack steps are given in Alg. 11 in Appendix A

Furthermore, it only gives 48 of the 56 DES key bits. Thus, either multiple rounds
have to be targeted in succession, or the remaining bits are obtained by an exhaustive
search.

Giraud’s Differential Fault Analysis of the Advanced Encryption Standard

As it is the case with the preceeding standard DES, the Advanced Encryption Standard
(AES) |FIPa| is susceptible to fault injection. In [Gir03|, an attack on the final round
(cf. Alg.4) is outlined. Here, all descriptions are given for the 128 bit variant AES-128
for simplicity, but they can also be extended to AES-192 and AES-256.

Algorithm 4 Final round of AES.
Require: 128 bit AES state register My after round 9

Require: 128 bit subkey Kiq

Require: AES operations SubBytes (-) and ShiftRows (-)
1: Ciphertext: C' « ShiftRows (SubBytes (My)) & Ko
2: return C
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Targeted Computation This attack targets the AES state register before the
final round 10, summarised in Alg.4. See |FIPa| for
further details

Fault Model Injection of a single-bit flip, non-permanent fault in
the state My after round 9
Adversary Model The adversary is able to request the encryption of

freely-chosen messages x at least 50 + 1 times and
receives the corresponding ciphertexts
Attack The attack steps are given in Alg. 12 in Appendix A

Blomer-Seifert Fault Attack on AES

AES includes a pre-whitening step (Alg.5), i.e., an initial key addition, which can be
aimed at with fault injection [BS03]. Fig.2.1 displays the structure of the first round,
including the pre-whitening. Again, all descriptions are for the AES-128, but the idea
is directly applicable to the variants with longer operands.

30» a1a.la, Plaintext
a

a.l|a

1.0 1.2

a

bo a

22

S-Box +—
Q0| 834|332 Aas

Koo [Keat- K57 iaegin of round 1
k1,(.’! k1.'I k1.2 k'I,S
Koo | Kar | Koz | Ko

Kao Ko | Kaa) Kso| 310

Figure 2.1.: First subkey addition and S-Box of AES for first plaintext byte (based on
figure in [Wik09]).

Algorithm 5 Pre-whitenining step of AES.
Require: 128 bit AES plaintext P
Require: 128 bit subkey K
1: Input for first round My: My «— P & K,
2: return M,
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The assumed fault unconditionally sets one bit of the first round input M, after the
key addition to zero (or, equivalently, one). Then, the outcome of the encryption is
observed and compared to the correct ciphertext. If the results match, the fault has not
changed the state of the targeted bit in My, i.e., the value of the bit is zero (or one,
respectively), and, since the plaintext bit is known, the corresponding key bit can be
computed. By scanning through all bits, the complete key is recovered.

Targeted Computation This attack targets the AES state register af-
ter the pre-whitenining step, summarised in Alg. 5.
See [FIPa| for further details

Fault Model Injection of a fixed-value, single-bit, non-permanent
fault in the state M, before round 1. The fault affects
exactly one bit which is unconditionally set to zero

Adversary Model The adversary is able to request the encryption of
freely-chosen messages x at least 129 times and re-
ceives the corresponding ciphertexts

Attack The attack steps are given in Alg. 13 in Appendix A

The applied technique is particularly interesting because the underlying idea is rather
general and can be applied to a wide variety of other cryptographic algorithms where (a
part of) the key is directly added to the plaintext. Yet, the fault model — setting a bit
to a fixed value — is quite specific, requiring further research on the practical feasibility
of such attacks.

Bypassing Vendor-specific Protections

Aside from breaking crypographic algorithms, fault injection techniques have been re-
ported to be capable of overriding vendor-specific security features such as read- and
write-lock bits of microcontrollers that — once set during manufacturing — prohibit
any further access to the instruction memory. Today, embedded software is considered
a valuable intellectual property, which an adversary, e.g., a competitor, must not be
able to reverse-engineer. Additionally, knowing implementation details can significantly
simplify a subsequent side-channel analysis or fault injection. For many common micro-
controllers, methods exist to bypass code protection by inducing a fault while issueing
the programming command [Sko0O1, Bre09].

A more sophisticated method to keep the embedded code secret is found in FPGAs,
e.g., Virtex products |Xil07|, manufactured by Xilinx. They allow for complete encryp-
tion of the bitstream used to program the FPGA with a symmetric cipher. In this case,
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fault injection (as well as side-channel analysis) might be used to attack the implemen-
tation of the respective cipher to recover the secret key and subsequently read out the
FPGA configuration.

2.3. Combined Attacks

Recently, a promising combination of fault injection and side-channel analysis has been
proposed, termed Passive Active Combined Attack (PACA) [AVEMO7|. The basic idea
is to attack implementations that are protected against both active and passive attacks
separately, but do not take the effects of applying both methods at the same time into
account.

To illustrate the impact of this type of attack, consider a masked implementation of
a cryptographic algorithm, i.e., the statistical dependency of the power consumption on
the data is eliminated by incorporating a random value called a mask into the internal
computations [MOPO7|. If an adversary can induce a fault during the generation or
loading of the mask, setting it to a constant or weak value (e.g., completely zero),
subsequent side-channel analysis is enabled, as the countermeasures depends on the
randomness of the mask that no longer holds.

In [AVFMO7|, the authors target an implementation of RSA [CMCJ04] that protects
against both SPA and DPA and additionally incorporates message randomisation. By
skipping the initialisation of a mask register and leaving it set to zero, the outcome of a
multiplication is no longer randomised, resulting in a strong dependence on the private
key bits which can be spotted in the power trace. Thus, a straightforward SPA can be
mounted.

Both the possibilities of combined attacks and feasible countermeasures against PACA
are currently investigated by the scientific community. As already the first proposed
attacks pose a severe threat to most present implementations and are difficult to protect
against, further significant results can be expected to be published in the near future.
The framework presented in this thesis is thus designed to support combined attacks to
be able to quickly obtain practical results for upcoming approaches.



3. A Framework for Side-Channel
Measurements and Fault
Injection Attacks

In this chapter, the framework for performing side-channel and fault injection attacks
(and possibly combinations of both) developed in this thesis is presented. We describe
the important building blocks and give details on the actual realisation and the Appli-
cation Programming Interface (API) used on the controlling PC' to communicate with
the respective part.

Analogue
Preprocessing
(optional)

Oscilloscope

: ‘ 4 Communication
'j" e (optional) Side-Channel
- ; Signal

Controlling PC Fault Injection

Device Under

API Test

Communication
(optional)

Fault Injection
FPGA

Figure 3.1.: Overall system structure for combined side-channel analysis and fault
injection.

Figure 3.1 gives an overview over the general system structure: the controlling PC
connects to an oscilloscope to record analogue signals, communicates with the DUT
and configures a Field Programmable Gate Array (FPGA) that performs the fault injec-
tion and is optionally able to control the DUT as well. In addition, there are analogue
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preprocessing circuits in order to improve the signal quality prior to oscilloscope mea-
surements. Note that in addition to the description here, a source-level documentation
using Dozygen is available, providing detailed information for all framework compo-
nents, as summarised in Appendix B. The complete documentation in HTML format is
provided together with the source code of the framework.

3.1. Development Toolchain

The development of the software for the controlling PC is done in C++, using the
GNU Compiler Collection (gce) |GCCO09| under Cygwin, a Linux-like environment for
Windows [Red09]. Hence, porting to other operating systems, e.g., Linux, is possible, as
long as the vendor-specific APIs (e.g., for the oscilloscope) are available for that platform.
All applications are compiled using Makefiles: in order to build the executable, running
make in the respective directory performs the necessary steps, provided that the library
dependencies (fftw3, ncurses, vendor-specific APIs) are met.

The Very High Speed Integrated Circuit Hardware Description Language (VHDL) code
is created, synthesised and mapped for the used FPGA with the free Xilinz ISE Design
Suite WebPACK [Xil09a]. The configuration bitstream is written to the FPGA using a
Joint Test Action Group (JTAG) cable connected to the parallel port of the development
PC.

3.2. Configuration Files

Many components of the framework are controlled by configuration files, so that the
parameters of the respective part are kept separate from the program code. The basic
idea is to have a folder for each series of measurements that contains — in addition
to the recorded waveforms — all configuration data for the recording and subsequent
analysis. This approach improves the reproducibility and facilitates the documentation
and evaluation of measurements, and allows for, e.g. automatic batch processing of the
results.

The configuration files use a key-value pair syntax and are grouped in sections be-
longing to several sub-modules. We detail the available settings for each module in the
according section. The following example fragment illustrates the syntax of a configu-
ration file:

# ...
[scope]
# Which scope is used: picoscope (default), adc8, adcl6, adc32
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type = picoscope

# Sample rate in Hz
sample_rate = 1000000000
# ...

Thus, a section is indicated by specifying the name in square brackets, followed by a
number of lines with key-value pairs (separated by =). A # indicates a comment, i.e.,
all following characters on this line are ignored. The values of specific keys are read
in using the open source iniParser library |[Dev08|, which provides functions such as
iniparser_getstring(), iniparser_getint() or iniparser_getdouble() to obtain
values of the respective type.

For better usability, the framework provides the classes measurement_config and
processing_config which parse the configuration files and wrap the access to the spe-
cific settings. For this purpose, those classes contain several sub-objects matching the
sections of the configuration file, e.g., scope () for accessing the oscilloscope configura-
tion. In turn, these sub-objects then allow to actually read the settings with get...()
methods.

3.3. Communication Modules

Though it is possible to conduct most implementation attacks using commercially avail-
able equipment, custom devices for communicating with the DUT are beneficial. Com-
mercial products often rely on proprietary ICs which do not give full control over the
exchanged data. E.g., a reader device generates the nonces for a challenge-response-
protocol using a built-in Random Number Generator (RNG), computes parity bits and
checksums, encrypts and sends data, without that an adversary can directly influence
the process.

Thus, in the following we present customised readers for possible DUTs, tailored to
the requirements of implementation attacks, in order to gain complete control over the
communication, i.e., send arbitrary commands or repeatedly the same chosen plaintext,
intentionally transmit wrong checksums and — crucial in the context of implementation
attacks — have full control over the timing and generate precise trigger signals. Note
that it is often sufficient to implement only some part of the protocol, up to the point
at which the DUT performs the respective cryptographic operation.

3.3.1. ISO 7816 Smartcard Reader

For communicating with ISO 7816 smartcards, the operating system driver routines in
winscard.dll are wrapped to simplify the use of the rather tedious low-level smartcard
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APT calls. These methods (implemented in aes_smartcard. (h/c)) are specific for an
example smartcard described in Sect.4.1.1, however, can also serve as a template for
other similar DUTs.

aes_smartcard _open() Opens the connection to the smartcard and initialises the
communication protocol.

aes _smartcard close() Closes the connection to the smartcard.
aes_smartcard _setkey() Sets a new key for the AES encryption.

aes_smartcard _send challenge() Sends a challenge to the smartcard that is en-
crypted with AES and returns the corresponding ciphertext.

When programming the interface for other smartcards based on this implementa-
tion, in most cases, the methods for opening and closing the connection can be left
unchanged. Only the functions directly sending an Application Protocol Data Unit Com-
mand (ADPU), i.e., commands specific for the respective smartcard, have to be adapted
accordingly. Usually, this involves the use of send_apdu(), which is static, that is,
only available within the API source file.

3.3.2. Contactless Smartcard Reader

In [Kas06], a flexible customised circuit for realising ISO 14443A-compliant [iso0la,
iso01b] 13.56 MHz RFID reader functionality and tag emulation is presented. Com-
mands are sent via a USB interface from the controlling PC. In the context of our
framework, we currently only employ the functions needed to communicate to contact-
less smartcards. Accordingly, we implement the base class rfid_device that provides
all basic methods required for the standard RFID protocol features. Subsequently, this
class can be inherited and used to provide the application-specific commands for authen-
tication and encryption for a concrete PICC. For this purpose, the following functions
are of special importance.

open() Opens the connection to the PCD.
close() Closes the connection to the PCD.
send frame() Sends a plain ISO 14443A frame.

send crc_frame() Sends an ISO 14443A frame, appending a checksum according to
the standard.

read result() Returns the answer sent by the RFID tag in response to a command
issued by the PCD.

check remove parity() Checks and removes the parity bits inserted into a PICC
response.
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Configuration File

For the configuration of the RFID reader and the protocol necessary to communicate to
contactless smartcards, a respective section of the configuration file may be used. First,
the serial port of the controlling PC for connecting to the reader is specified, followed
by the configuration which type of challenges are to be sent during the side-channel
measurement phase.

diff_means indicates a mode in which only two challenges are sent alternately, in
order to be able to isolate the points in time where the side-channel information is
leaked during the profiling phase. In full_dpa mode, the challenge cycles through the
20 possible input values for one isolated S-Box of the DES, as proposed in [Osw08]. The
targeted S-Box for those two modes is specified by sbox. In contrast, full_dpa_rand
selects the transmitted challenges uniformly distributed at random. In all modes, the
sent, values and additionally the responses of the PICC during the protocol execution
are stored in standard text files, with 8 bytes in hexadecimal encoding per line.

[reader]
# COM port of reader
port = "/dev/com3"

# diff_means, full_dpa, auth, full_dpa_rand
mode = full_dpa_rand

# sbox index 1 - 8 for diff_means and full_dpa
sbox =1

3.3.3. Arbitrary Parallel/Serial Communication

Embedded systems and cryptographic devices that do not feature an RFID- or ISO
7816-based interface usually employ a serial or parallel protocol to communicate with
their environment. In the context of implementation attacks, example targets may be
FPGAs that are configured with an encrypted bitstream or cryptographically protected
USB dongles. Therefore, we support a variety of corresponding protocols, either by
the controlling PC if the timing is not crucial (e.g., USB, RS-232, or parallel port)
or by means of the fault injection FPGA platform, if precise timing is required (e.g.,
Serial Peripheral Interface (SPI) and general purpose 1/O pins). If necessary in future
applications, further methods can easily be added thanks to the modular nature of our
setup.
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3.4. Measurement Modules

To record and evaluate side-channel information, modules for measuring and filtering the
analogue signal, controlling the oscilloscope, and finally processing the recorded traces
are available. In the following section, we describe these parts of the framework.

3.4.1. Oscilloscope

A Digital Storage Oscilloscope (DSO) is used to record analogue waveforms to develop,
prepare and to actually conduct side-channel measurements. In its current version, the
frameworks employs the Picoscope 520/, a dual-channel DSO controllable from a PC via
its USB 2.0 interface [Pic08]. It features a maximum sample rate of 1 GHz, 8 bit vertical
resolution at an accuracy of £3% and 128 MSamples waveform memory. The input
bandwidth is 250 MHz, with a minimum input range of +100mV. Additionally, the
device offers a separate external trigger input and a built-in arbitrary signal generator.

Note that the API is kept as abstract as possible so that different oscilloscopes can be
substituted, e.g., when higher precision or bandwidth is needed. We address the general
API and the Picoscope-specific parts in this section.

Configuration File

In order to be able to adjust parameters of the oscilloscope without changing and re-
compiling source code, most features can be controlled via the configuration files men-
tioned above. In the following, we present an example step-by-step. The first sec-
tion specifies global settings, i.e., the type of the oscilloscope (for which currently only
picoscope provides full functionality) and the sample rate in Hz.

[scopel]

# Which scope is used: picoscope (default), adc8, adcl6, adc32
type = picoscope

# Sample rate in Hz

sample_rate = 500000000

The following parts already depend on certain characteristics of the concrete oscil-
loscope, as e.g., the number of available channel varies depending on the respective
product. For the Picoscope 5204 with two analogue inputs, the configuration includes
the activation of each channel, the range in mV, the coupling®, the use as a trigger

LAC coupling implies a highpass filter which removes a DC offset before analogue-digital conversion
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source, the trigger mode?, threshold and hysteresis in mV, and finally the prefix which
is used to name the files containing the waveform data recorded on this channel.

# Settings for first scope channel

[channel_a]

# true, false (default)

enable = true

# in mV (defaults to 100 mV)

range = 100

# Coupling: ac (default), dc

coupling = ac

# Enable as trigger source: true, false (default)
trigger_enable = false

# Filename prefix (output format: prefix trace_number.dat)
file_prefix = trace_channel_a

# Settings for second scope channel

[channel_b]

# true, false

enable = true

# in mV

range = 10000

# coupling: ac (default), dc

coupling = dc

# enable as trigger source: true, false

trigger_enable = true

# level, window

trigger_mode = level

# Threshold for level trigger, lower threshold for window trigger
# in mV, defaults to range/2

threshold_lower = 1500

# Ignored for level trigger, upper threshold for window trigger in mV
threshold_upper = 1500

# Hysteris for trigger in mV (defaults to 50 mV)
hysteresis = 150

# Filename prefix (output format: prefix trace_number.dat)
file_prefix = trace_channel_b

In the example file, only the second channel B is used for triggering the start of the
recording. Additionally, the range and trigger configuration for the external trigger input

2 A trigger event may either occur when a certain voltage level is reached or when the voltage is within
some interval or window
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has to be specified, however, note that this channel cannot be used to actually digitise
the analogue signal.

# Settings for external scope channel
[channel_ext]

# true, false

enable = false

# Enable as trigger source: true, false
trigger_enable = false

Next, settings with respect to the amount of data (in ns) gathered before a trigger
and the delay of the start of the recording with respect to the trigger event (in ns) are
made. Additionally, it is possible to define an automatic trigger after a certain period
of time (in ms) without an event. The conditions on which a trigger event shall occur
are defined following the approach of the Picoscope API.

It allows for rather flexible combination of the trigger states of the individual input
channels to form the global trigger signal which in turn starts the actual recording.
For each channel, a direction (rising and/or falling edge, above or below a level) and the
condition which must be met to generate a trigger event are specified®. These conditions
are combined with a logical AND, i.e., must all be met simultaneously for a trigger event
to be caused. In the example, only channel B is used, reacting to a rising edge.

[scope_trigger]

# Number of samples before trigger in ns

pretrigger_samples = 5000

# Delay after trigger before recording in ns

trigger_delay = 0

# Automatic trigger after specific period, O to disable, in msec
auto_trigger = 2000

# Mode for channels: true, false, dont_care (default)
channel_a = dont_care

channel_b true

channel_ext = dont_care

# Directions for channels:

# none (default), rising, falling, rising_falling, above, below
direction_a = none

direction_b = rising

direction_ext = none

3true indicates that the direction event has, false that it has not occurred; dont_care ignores the
trigger state of the input channel
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A special feature of the Picoscope 5204 is the pulse width qualifier, which can serve
as a trigger source to detect certain characteristics with respect to pulse width in an
input waveform. The example configuration assumes a negative pulse, i.e., a transition
1 — 0 — 1, with a width of less than 1.4 us. Again, the signal for which the pulse
conditions are checked is formed by a logical AND of the individual channel states.
Note that if this feature is used, the channels set to true here must also be configured
in the above part, accordingly. Besides, the above setting direction_b = rising has
to be changed to none so that a simple rising edge does not generate a trigger event,
but only the pulse of the desired width.

[scope_pulse_width_trigger]
# Enable pulse width qualifier trigger: true, false
enable = true

# Mode for channels: true, false, dont_care (default)
channel_a dont_care

channel_b = true

channel_ext = dont_care

# Direction of pulse: rising (positive pulse), falling (negative pulse)
direction = falling

# Pulse width recognition type:

# less_than, greater_than, in_range, out_of_range
mode = less_than

# Lower limit for pulse width recognition in ns

# (used for all modes)

lower = 1400

# Upper limit for pulse width recognition in ns

# (used for range modes only)

upper = 0

API

When controlling the oscilloscope directly from own programs and not using the frame-
work applications that make use of the configuration files, an object-oriented interface
can be used, encapsulating the details of a concrete oscilloscope. This simplifies the
change to a different product — at least up to a certain extent, as the variety of vendor-
specific features renders the creation of a completely device-independent API virtually
impossible.

The abstract base class scope defines the common interface for controlling and re-
trieving waveform data from an oscilloscope. Any concrete implementation, e.g., for
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the Picoscope, has to inherit this base class and provide code for the methods we briefly
describe in the following. Refer to the Doxygen documentation for details like parameter
types, return values and implementation-specific aspects.

connect() Opens the connection to the oscilloscope.
disconnect() Closes the connection to the oscilloscope, stopping any active recording.

configure() Apply the settings passed to this method, wrapped in an object of type
measurement_config.

arm() Arm the oscilloscope, i.e., wait for trigger events.

disarm() Disarm the oscilloscope, i.e., stop reacting to trigger events.
fetchData() Retrieve the current waveform data for a certain channel in mV.
getRawDataWidth() Get the width of the internal data buffer in byte.

fetchRawData() Retrieve the current waveform data for a certain channel as raw inte-
ger values, where the width of one value can be otained by calling getRawDataWidth ().

We provide a concrete implementation of this interface for the Picoscope 5204, encap-
sulating the C-APT supplied by the vendor [Pic07|. Basically, the process to configure
and start the recording of a waveform consists of a few function calls. Note that, how-
ever, in the following example, parts like error checking have been omitted for better
readability.

// load configuration file
measurement_config cfg("/path/to/config_file.ini");

// create oscilloscope instance
scope* s = new picoscope();

// open and configure
s->connect () ;
s->configure(cfg);

// wait for trigger event
s->arm() ;

while(!s->isDataAvailable()) {
::usleep(1000);
}

// retrieve waveform for channel A
timeseries_t data;
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s->fetchData("a", data);
// ... process data ...

// close connection
s->disconnect();

3.4.2. Analogue Pre-Processing

Frequently, the quality of the signal carrying the side-channel information can be im-
proved before it is digitised by the oscilloscope. Using specific measurement equipment,
analogue filter circuits and pre-amplifiers is of particular importance when analysing the
EM emanation of, e.g., an RFID tag.

Amplifier

Before addressing the equipment for specific attack scenarios, we note that it is often ad-
vantageous to amplify the typically small amplitude of the signal in the analogue domain
to reduce the Signal-to-Noise Ratio (SNR). The commercially available amplifier PA303
made by Langer EMV features an almost constant gain of 30 dB (i.e., multiplication by
~ 31.6) up to 3 GHz. The amplifier was designed for a characteristic impedance of 50 €,
so appropriate termination may be required for high-impedance scope inputs. Besides,
its output amplitude is, according to the vendor, limited to ~ 1 V. Above this level,
non-linear clipping effects occur. Thus, the input amplitude must not exceed =~ 31 mV.

ISO 7816 Smartcards

For side-channel analysis of smartcards according to ISO 7816 [ISO04|, we constructed
an adaptor that fits into any commercial smartcard reader. On the other side of the
adaptor, a socket for any ISO 7816 card is available. The data and power lines are tapped
and rewired, so that the signals can be relayed from and to a standard reader, e.g., for
monitoring communication protocols. The power pin allows to connect an external stable
power supply (or, for fault injection, our module presented in Sect. 3.5.2), with a resistor
inserted in series to the ground pin of the smartcard for recording power traces.

Contactless Smartcards

When conducting a DEMA, the EM emanation is captured by means of near-field
probes |Lan| manufactured by Langer EMV*. The probes are connected via standard

4The probes were originally designed for electromagnetic compatibility (EMC) tests
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BNC cables with a characteristic impedance of 50 2. For most measurements, the RF-U
5-2 probe is used, because it is suited to capture the near H-field which is proportional
to the current flow on the IC.

In our previous work [Osw08], we proposed several filter circuits for reducing the
influence of the sinusoidal reader field to facilitate DEMA on contactless smartcards.
Our approach bases on subtracting a clean reference sine signal, e.g., tapped at the
reader crystal oscillator, from the measured EM trace. To equalise the amplitudes and
correct for the inevitable phase shift caused by the Radio Frequency (RF) interface of
the reader, appropriate blocks are included in the circuit. Fig.3.2 demonstrates the
principle of this idea, for details, cf. [OswO08].

Subtract &
Measured amplify

i

Reference Amplify/ Phase shift
signal Attenuate

Figure 3.2.: Block diagram for reduction of RFID reader field influence.

3.4.3. Framework Class for Measurement Applications

The class measurement_app is designed to simplify the development of applications that
perform typical side-channel measurements and fault injection attacks. Hence, the class
encapsulates as much commonly required functionality as possible, while maintaining full
flexibility, i.e., allows the user to modify these abstracted tasks if necessary. We follow
a common approach employed in object-oriented frameworks and develop a base class
with methods that are overwritten by inheriting classes to define the application-specific
behaviour.

Fig. 3.3 depicts the control flow of a standard measurement application, with the
methods highlighted that are commonly overwritten to customise the program for a
concrete DUT. These methods mainly deal with establishing the connection (initDUT(),
cleanupDUT() ), send and update the challenge for the DUT (sendChallenge() and
nextTrace ()) and optionally process the recorded waveform (processTrace()). Note
that fault injection is integrated with the measurement process, allowing for combined
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and possibly adaptive attacks, i.e., choose the next challenge or discard waveforms based
on the result of a prior fault injection.

" initbuT()

Initialise _ 'inﬂSCope(}
—__ initFaultFPGA()

arm()

sendChallenge()
waitForTrigger()

feco saveTrace()
processTrace()

= All traces

yes] recorded? nextTrace()
— cleanupFaultFPGA()
Cleanup cleanupScope()

T~ cleanupDUT()

Figure 3.3.: Program flow of measurement framework application.

For more details on the usage of the framework class, please refer to the Doxygen
documentation and the provided examples. These include a measurement application
for a real-world smartcard, a combined fault injection and waveform recording program
and demonstration code for further customising the framework for special requirements
that are not covered by the basic structure.

Configuration File

The recording of waveforms can be customised with regard to the maximum number of
trace files that are stored per directory. This is often useful as many filesystems respond
significantly slower if a folder contains too many files. Besides, the total number of
recordings and the length (in ns) of each single trace are set by the corresponding lines
in the respective configuration section.

[record]
# Max. number of files in one dir
max_files_per_dir = 1000

# Number of traces to record
trace_count = 500

# Length of trace in ns
sample_count = 2300000
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3.4.4. Framework Class for Evaluation and Processing
Applications

Analogous to the framework facilities for capturing side-channel information and con-
trolling the induction of faults, the separate class processing_app copes with the task
of processing and evaluating the gathered waveforms, i.e., perform the actual analysis.
The idea is similar to measurement_app, that is, certain methods are overwritten to re-
alise the desired functionality, while repetitive procedures are provided by the base class.
This includes the loading of the trace data files, digital pre-processing, alignment in time
and in general the handling of configuration information. The program flow is outlined
in Fig. 3.4, marking the methods commonly adapted with respect to the requirements
of the specific problem.

__— initTraceLoader()

Initialise prepareChain()
—_— userlnit()
— loadTrace()
Process processTrace()
~~__ evaluateTrace()
no
All traces

B processed?

userCleanup()

Cleanu
P cleanupTraceloader()

Figure 3.4.: Program flow of measurement framework application.

Classes inheriting trace_loader are employed for reading the waveform file format.
When not specifying a custom loader, default_trace_loader is used, supporting the
straightforward binary format® output by measurement_app.

During the evaluation process, each waveform is digitally pre-processed by the pro-
cessing chain, passing the signal through a sequence of filtering blocks. The chain is
set up in the configuration file and currently provides blocks for extracting parts of a
timeseries, rectification, digital high- and lowpass filters, pattern matching functionality
for alignment of power traces in time and the computation of the power spectrum, i.e.,
the squared magnitude of the Fourier transform [KKO06].

5Essentially, these files contain the digitised signal samples as signed 16-bit integers in the case of the
Picoscope 5204
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The evaluation of the pre-processed signal depends on the concrete application and
has thus been provided by the user of the framework. Examples include the extraction
of local minima and maxima from a trace to reduce the amount of data before further
evaluation, or the implementation of a CPA on a 3DES encryption engine.

Configuration File

We exemplify the configuration file for conducting a CPA on a 3DES engine. The first
section references the configuration file from which certain settings are needed for the
processing, e.g., the sample rate, the number of traces etc. Subsequently, parameters of
the CPA, that is, more specifically, of the prediction function (predicted intermediate
value, number of bits), the power model, and the location for the result files are set.

[common]
# Name of the recording settings file
settings_file = settings.ini

[3des_dpal

# Name of challenge file

challenge_file = challenges.txt

# Output for correlation data

output_dir = /correlation_humpl_8MHz/

# Known-key for triple DES

key = 3b 38 98 37 15 20 f7 5e 92 2f b5 10 c7 1f 43 6e

# DPA oracle to use:

# known: Intermediate results before and after each DES are known
# known_first_des: All intermediate in first DES iteration are known
# dpa_first_round: CPA on first round of first DES

# dpa_des2_first_round: CPA on first round of second DES

oracle = dpa_first_round

# Power Model: weight, distance

power_model = distance

# For weight: For distance: 1st intermediate.

roundl = 0

# 2nd intermediate

round2 = 1

# Number of S-Box bits for CPA (1-4)

bits = 4

# Number of attacked S-Boxes for dpa_first_round

sbox_cnt = 8
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The setup of the processing chain is done by specifying the respective blocks consec-
utively, where the section name is arbitrary — but must be unique within the chain —
while the type is determined by the first line of each block. As an example, we use a
processing chain useful for analysing RFID tags, which will be applied in Sect. 4.1.2 for
a practical key-recovery attack on a contactless smartcard. Fig. 3.5 displays a graphical
representation of the signal flow for this processing chain.

[cut]

type = cut_trace

# Where to start in trace (in ns)
begin = 18000

# How many samples to load (in ns)
length = 35000

[rectifyl
type = rectifier

# demodulation lowpass

[lowpass]

type = bandpass

# Highpass cutoff, i.e. left corner frequency in Hz
cutoff_left = 0

# Lowpass cutoff, i.e. right corner frequency in Hz
cutoff_right = 8000000

# FIR filter order

order = 800

# DC block highpass

[highpass]

type = iir_highpass

# Highpass cutoff frequency in Hz
cutoff = 50000

[align]

type = alignment

# Number of reference trace

ref_trace = 2

# After which step of chain to get pattern
pattern_after = highpass

# Begin of pattern (in ns)

begin = 19370

# Length of pattern (in ns)
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length = 600
# Offset for pattern search (in ns)
search_offset = 4000

# Disable automatic pattern search for databus
auto_align_databus = false

[cut2]

type = cut_trace
begin = 19000
length = 3500

Note that this example only employs a subset of the available blocks. We do not
describe all parameters for all possible functions here, but rather present one particular
example to emphasize the flexibility of the chain concept. It is easily extended with
new functionality as needed and separates the settings for the pre-processing from the
application logic, facilitating the re-use of verified primitives and  for experiments that
are inevitable when attacking real-word DUTs — the batch processing with different
settings.
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Figure 3.5.: Graphical representation of an example processing chain.

3.5. FPGA-based Module for Fault Injection

As summarised in Sect. 2.2.1, many different approaches can be utilised to inject faults
in integrated circuits. In order to unify the application of this methods, we propose
an FPGA-based control board which is extended with fault modules which realise the
actual physical effect. The FPGA provides an interface to the controlling PC via an
RS232 serial port, controls fault parameters (e.g., position in time, duration etc.) and
is able to communicate with the DUT if required.

The use of an FPGA has certain advantages compared to a microcontroller-based so-
lution, particularly with regard to precise timing of control signals at high clock frequen-
cies. To minimise the design time, we use a commercial Xilinx Spartan-3 board |Xil08¢]
as a basis.
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The system clock frequency is defined to 100 MHz, generated from the 50 MHz on-
board oscillator using a Spartan-3 Digital Clock Manager (DCM). At 100 MHz, the
FPGA runs significantly faster than most of the considered embedded systems (which
usually are clocked at between ~ 32 kHz and 20 MHz, cf. [Cor05|), thus enabling the
injection of faults at multiple points during one clock cycle of the DUT. Note that at
higher frequencies, it becomes increasingly difficult to select and apply the involved
analogue (and digital) components appropriately. If future applications require higher
frequencies, it is still possible to run the respective parts of the FPGA logic in a different
clock domain, or even switch to a more powerful FPGA.

3.5.1. Overall System Structure

To simplify the implementation of complex control logic, the design is built around a
general 8-bit microcontroller softcore (Xilinx PicoBlaze, cf. [Xil09b|) which is internally
connected to several application-specific modules, as depicted in Fig. 3.6:
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Figure 3.6.: FPGA structure overview.

Control Logic

The PicoBlaze softcore is a Reduced Instruction Set Computing (RISC) microcontroller,
programmable using a simple assembler language |Xil08a|. It has low resource require-
ments (96 slices + 1 block RAM on a Spartan 3 FPGA), is supplied as VHDL source
and is well suited for implementing non timing-critical control and interface logic.

All timing-critical operations that have to respond to external inputs instantly, and
require guaranteed timing behaviour, are moved into the application specific blocks.
The central module in this respect is the timing controller, which is responsible for
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starting previously configured faults with precise timing parameters. The purpose of the
microcontroller is to provide a unified and extensible interface between the controlling
PC and the actual fault injection modules. The complete embedded code (firmware) of
the PicoBlaze is contained within the file control.psm and can be converted to a VHDL
instruction ROM using the assembler kcpsm3. exe.

Interface to Controlling PC

Due to its simplicity and the option for galvanic isolation if required, an RS232 Universal
Asynchronous Receiver Transmitter (UART) is used to control the fault injection FPGA
from the central PC. For this purpose, Xilinx includes the VHDL module uart with the
PicoBlaze package, which is connected to the external bus of the softcore and can be
accessed to receive and transmit bytes with few assembler commands. These commands
are wrapped in the firmware functions read_from_UART and send_to_UART, whereas the
read byte or the byte to send is passed in the register UART_data, respectively.

Command Parameters Description

0x10 1 address byte  Read 4 data bytes from the specified address from
the timing generator control memory

0x20 1 address byte Write 4 data bytes to the specified address into

+ 4 data bytes the timing generator control memory

0x40 None Arm the timing generator, i.e., let it respond to
trigger edges

0x80 None Return the status byte, including the status of the
external input pins in bit 2 ... 5

0x90 1 byte Set the values of the external output pins. Only
the lower half of the parameter byte is used.

0xf0 None Reset the timing generator

0x50 1 byte Set the prescaling factor for the clock fault gener-
ator

0x60 1 byte Set the fine phase shift for the clock fault genera-
tor

0x70 1 byte Set the coarse phase shift for the clock fault gen-
erator

0xa0 1 byte Set the low voltage for the power fault generator

0xb0 1 byte Set the high voltage for the power fault generator

Table 3.1.: UART control commands interpreted by the fault injection FPGA.

The main loop of the embedded code dispatches the commands issued by the PC
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based on the first byte received when the controller waits for instructions in its idle
state. Based on this byte, subroutines controlling the specific functions of the fault
injection FPGA are called which are in turn responsible for handling further parameters.
Tab. 3.1 summarises the available commands, however, note that at this point, the actual
meaning of the parameters might remain unclear. They will be explained in the following
sections where the functionality of the corresponding blocks is covered.

APl On the PC side, the RS232 communication and the FPGA commands are wrapped
in the class fault_fpga, which provides functions for all commands in Tab. 3.1, and addi-
tional methods that encapsulate low-level tasks, such as directly writing the parameters
for specific pulse waveforms to the timing generator configuration memory. The class is
utilised as follows:

fault_fpga fpga;

// Open connection to FPGA connected to COM1
fpga.open("/dev/coml");

// Initialise
fpga.init();

// Perform configuration

/] ...

// Arm the FPGA
fpga.arm();

// Wait for device being armed
do {
status = control.getStatus();
::usleep(1000) ;
} while(!(status & 1 << fault_fpga::FPGA_ARMED));

// Wait for device being ready again
do {
::usleep(1000);
status = control.getStatus();
} while(!(status & 1 << fault_fpga::FPGA_READY));
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// Close the connection
fpga.close();

Timing Controller

As we aim at constructing a flexible device, we separate the generation of the fault trigger
inject_fault, i.e., the signal that starts a fault injection, from the logic responsible
for controlling a specific fault module. This functionality is implemented in the VHDL
block timing_controller_waveform, which is connected to a dual-port configuration
memory waveform_ram realised as a BlockRAM. The waveform_ram holds 256 4 byte
words for general configuration data and the sequence of pulses. The structure of the
memory is depicted in Tab. 3.2. Note that currently the timing is static, as the specified
pulse waveform is generated on a rising edge of an external trigger signal trigger, which
can be, e.g., produced by the DUT and also serve to start an oscilloscope recording.

Address Description

0x00 Configuration word holding the polarity and the number of
configured pulses.

0x01 Reserved for future use.

0x02 Delay of the first pulse in FPGA clock cycles, with respect to

the rising edge of the external trigger, where a value of zero
corresponds to the minimum offset of four cycles.

0x03 Length of the first pulse in FPGA clock cycles, where a value
of zero corresponds to the minimum lenght of one cycle.
0x04 Delay of the second pulse, with respect to the end of the first

pulse, where a value of zero corresponds to the minimum offset
of three cycles.

Table 3.2.: UART control commands interpreted by the fault injection FPGA.

The memory is accessable both from the microcontroller, allowing for configuring the
fault injection timing via the PC interface, and from the timing controller, which gener-
ates the specified waveform and passes it to the actual fault modules. On the controlling
PC, the timing is set by adding pulses to the FPGA control object fault_fpga. The
corresponding methods are summarised by the following enumeration.

addPulse() Appends a pulse to the configuration memory, where the offset with respect
to the previous pulse and the length of the pulse itself are both specified in ns.

clearPulses() Clears all pulses currently configured.
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setPolarity() Sets the logic value of inject_fault in its active state, i.e., while a pulse
for a fault injection is generated.

General Purpose Input/Output Pins

As mentioned in Sect. 3.5.1, the FPGA provides both four general purpose Input/Output
(I/O) pins which can be utilised for, e.g., executing low-speed digital communications
protocols, resetting the DUT (for instance, if a fault injection caused the device to
crash) or reading the state of external inputs for detecting a successful fault injection.
The methods provided by fault_fpga are:

getUserlnput() Gets the state of the four input pins, encoded in the four low bits of
the return value.

setUserOutput() Sets the state of the four output pins, where only the four low bits
of the parameter are used.

Configuration File

To simplify the use of the fault injection FPGA together with measurement_app, a sec-
tion in the measurement configuration file controls the respective parameters. Currently,
only a voltage_sweep is supported, i.e., iterating over the offset, width and voltage level
for faults generated by the power fault module described in Sect. 3.5.2. Aside the spec-
ification of the serial port for communication, the upper (*_high) and lower bounds
(*_1low) and the step width (*_step) for all mentioned parameters are set.

# COM port of FPGA
port = /dev/coml

# FPGA clock frequency in Hz (fixed in VHDL code, value cannot
# be manipulated here but MUST be CORRECT)

# default is currently 100 MHz

clock = 100000000

# voltage_sweep
mode = voltage_sweep

# high voltage (constant) in DAC counts (0 ... 255)
voltage_high = 175

# start voltage for low voltage sweep in DAC counts (0 ... 255)
voltage_low_start = 70
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# end voltage for low voltage sweep in DAC counts (0 ... 255)
voltage_low_end = 80

# step size for low voltage sweep in DAC counts (min. 1)
voltage_low_step = 1

# start pulse offset in ns (min. 30 ns)
offset_start = 1330

# end pulse offset in ns (min. 30 ns)
offset_end = 2530

# step size for pulse offset in ns (min 10 ns)
offset_step = 100

# start pulse width in ns (min. 10 ns)
width_start = 2010

# end pulse width in ns (min. 10 ns)
width_end = 2210

# step size for pulse width in ns (min 10 ns)
width_step = 200

Interface between FPGA and Physical Fault Injection Module

The fault module, i.e., the Printed Circuit Board (PCB) containing the circuitry for
realising physical faults, is attached to the FPGA board using the 40-pin expansion
connectors A2 and B1l. These sockets provide access to freely assignable FPGA pins,
so that the interface to the fault module can be kept flexible. Therefore, we specify
the connector pin allocation only partially in Tab. 3.3 and leave the rest open to satisfy
the requirements of the concrete fault module. Note that in the pinout specification, I
indicates an input to the FPGA, 0 an output from the FPGA and P a power supply or
ground pin.

CLK is a separated clock pin designed to transport high frequency clock signals. It
is surrounded by ground signals to minimise the disturbing influence on other signals
and should be used for clocking external components where possible. Note that the
frequency is not fixed, i.e., the pin can be used as desired.

Pin 40 functions as the trigger signal trigger for the internal timing generator and
is shared between A2 and B1, that is, linked to the same FPGA pin. Pins 35 - 38 are
defined as Not Connected (NC) and must be left open since they are bound to the FPGA
programming interface. Pin 6 has an internal pulldown-resistor and should be connected
to +3.3 V on the extension board to signalise the availability of a fault module. The
user input and output pins 6, 8, ..., 20, 22 are dedicated to provide low-speed digital
signals accessible from the controlling PC.
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In the present version of the FPGA design, dynamically switching the functionality of
the remaining pins based on the connected fault board type is not supported. The main
reason is that this functionality would require (possibly wide) multiplexers at these pins
— rendering the timing more difficult — and a way to recognise the module type, e.g. a

small EEPROM or a hard-wired identifier.

Therefore, we use a static pinout, with the power fault module connected to A2 and the
clock fault module to B1. The most straightforward way to support other configurations
is to generate FPGA programming bitstreams for each desired variant and load the
corresponding file via the programming interface before booting the device. Note that
this could even be done dynamically on the controlling PC using the appropriate Xilinx
command-line tools, so little flexibility is given up with respect to most part of the
concrete applications.

| | [Pin[Pin| | |

GND Pl 1 2 |P|+5V

+33V Pl 3 4
5t 6 | I | Device plugged
7 8 I | User Input 0
9 10 | T | User Input 1
11 | 12 | T | User Input 2
13 | 14 | T | User Input 3
15 | 16 | O | User Output 0
17 | 18 | O | User Output 1
19 | 20 | O | User Output 2
21 | 22 | O | User Output 3
23 | 24
25 | 26
27 | 28
29 | 30

GND P| 31 | 32 | P|GND

CLK O 33| 34 | P|GND

NC 35 | 36 NC

NC 37 | 38 NC

NC 39 | 40 | T | Trigger

Table 3.3.: FPGA to fault module connector pinout.
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3.5.2. Power Fault Module

As described in Sect. 2.2.2, power faults can be both triggered by negative (i.e., reduction
of the supply voltage) and positive glitches (i.e., increase of the supply voltage). For
maximum flexibility in this respect and for fine control over the actual waveform, we have
chosen a Digital-Analogue Converter (DAC) based approach, as depicted in Fig. 3.7.

Amplifier /
Output buffer

8

D
/ DAC
7
> > DAC
Control signals D

4

DUT supply
voltage

From FPGA

Figure 3.7.: Structure of power fault module.

The voltage Vpac at the DAC output pin can be controlled via an 8-bit bus, passing
a binary-encoded number Dpac € {0, ..., 255}. In the following, we occasionally refer
to this value as DAC counts. Vpac is then given as Vpaec = D%gc - VDAc, max Where
Vbac, maz denotes the maximum output voltage.

Because the considered DAC ICs generate voltages of max. ~ 1 V and cannot supply
output currents > 20 mA, an additional output amplifier is required to provide higher
voltages and greater driver strength. This part of the circuit has to be designed with the
speed requirements for faults in mind. Here, the FPGA and the DAC run at 100 MHz,
so the output amplifier has to match this specification and be able to pass through the
waveform with as little distortion as possible.

APl Since the timing is covered by the configuration of the timing controller, only
the respective voltage levels need to be set by the controlling PC. Note that our current
implementation is restricted to pulses with an upper and a lower voltage, however, could
easily be extended to output arbitrary pulse forms due to the DAC approach. The API
call for specifying the pulse voltages is setDacVoltages (), which takes the lower and
the upper voltages encoded as 8-bit DAC counts.

Implementation Details

A PCB has been designed with the structure introduced above. The used DAC is
the AD9708 manufactured by Analog Devices [Ana09b|, capable of running at max. 125
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MSamples/s. The output amplifier is a two-stage design, built with the current-feedback®
Operational Amplifier (OP) AD8012 by Analog Devices [Ana09a| providing a theoretical
bandwidth of 150 MHz at a gain of +2 and a slew rate” of 2250 V/us. A simplified
schematic of this output stage is given in Fig.3.8. The complete schematic is given in
Appendix C.1. In the following we discuss the circuit and its disavantages. Then, we
present an improved revision that overcomes these problems.

First amplifier stage Second amplifier stage
Gain =1+ &5 Gain = 1 +
R_F R_F1
T T
R G R _G1 N
9 H ‘ Output
== ™~ - g {1
—> /’ RO ’ RO1
DAC output 9 .
RL _
current M

Figure 3.8.: Output stage of power fault module, revision 1.

Fig. 3.9 shows a negative voltage glitch (= 4V — 0V) with the minimum width of
10 ns measured at the output of the DAC. This pulse is then amplified by the AD8012
in a non-inverting configuration by 4, resulting in the waveform given in Fig. 3.10. Note
that both signals have been recorded using a probe set to x10 attenuation to minimise

the influence of the probe capacitance and rise/fall times®.

While the DAC is able to drive its output completely low, the OP cannot fully dis-
charge the load capacitance within the required time. The primary reason for this
behaviour is that the OP does not provide a rail-to-rail output, i.e., is unable to pro-
duce voltages close to its supply lines. Since the negative supply voltage is connected
to ground, the minimum voltage is thus ~ 1.3 V. Although this is not problematic for
the practical experiments described in Sect. 4.2 (because the required minimum voltage
is greater), it somewhat limits the general applicability of the power fault module.

Besides, two other problems are present: First, the max. output amplitude is ~ 4V,
again partially restricting some applications, although most embedded devices can be
operated at 3.3V. Second, the clock signal of the DAC has disturbing influence on the
supply voltage of the DAC, presumably because the signals are routed in proximity. This
effect can be mitigated by only clocking the DAC when new values need to be written,

6For current-feedback amplifiers, the bandwidth is not in inverse proportion to the gain

"The slew rate indicates the maximum rate of change of the output voltage

8 According to the manufacturer [TES], the used probe TESTEC TT-HF 312 has a rise time of 1.2ns,
an input resistance of 10 M) and a capacitance of 15 pF for x10 attenuation
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Figure 3.9.: Full-scale 10ns negative volt- Figure 3.10.: Full-scale 10ns negative volt-
age glitch at DAC output, x10 age glitch at first amplifier out-
probe. put, x10 probe.

which is sufficient for the case of a simple pulse as output waveform (where most of the
time the output is kept constant).

Bipolar transistor driver stage

First amplifier stage —
Gan=1++%%

DAC output RL

current l
4[;i BCAOT -
\

Figure 3.11.: Output stage of power fault module, revision 2.

To overcome these problems, a second revision has been designed. To increase the
maximum amplitude up to ~ 5.5V, the output amplifier gain is set to ~4.7. Addi-
tionally, a bipolar transistor-based output stage according to [Kug03|, p. 258, has been
implemented, which enables output currents of max. 150 mA at a supply voltage of 7.5V.
By selecting different transistors, this value could be further improved if required. The
second reason for the redesign of the output stage is the inability of the first module
version to fully discharge a load within the set time boundaries. Therefore, this time, the
negative supply voltage of the OP is separated from ground, enabling bipolar operation



48 A Framework for Side-Channel Measurements and Fault Injection Attacks

and in consequence output voltages down to 0 V. The second revision of the output stage
is depicted in Fig.3.11. The complete schematic can be found in Appendix C.2.

The noise is lowered (but not completely eliminated) by improved layout, capaci-
tive decoupling of the DAC supply voltage pins and the reduction of the FPGA driver
strength for the clock line to 10 mA, which turns out to be the smallest working setting.

Fig.3.12 and Fig.3.13 depict a 10ns full-scale pulse generated with the revised power
fault module, recorded at different points of the circuit.

/ \ X
ez / . \ -
NI ~ /N

-~ --\\.- ﬂ b V\V.\/ﬁ"{l \ /

Figure 3.12.: Full-scale 10ns voltage glitch Figure 3.13.: Full-scale 10ns voltage glitch
at amplifier output, module re- after transistor output stage,
vision 2, x10 probe. module revision 2, x10 probe.

3.5.3. Clock Fault Module

Clock faults as introduced in Sect.2.2.2 are generated by a small, temporary variation

of the period of the clock signal. For maximum flexibility, a module for this type of fault
has to provide:

e A wide range of output frequencies, especially covering the range of embedded
systems and

e precise control over the duration the clock signal is set.

Our approach makes use of the DCM of the Xilinx FPGA which is able to generate a
clock signal with very fine control over its phase shift. By outputting both an unshifted

and a shifted clock and combining these signals logically with external circuitry, several
useful waveforms can be created.

As in the present implementation, available gates would have been unused, we decided
to include three other waveforms. Aside from stretching a clock cycle, moreover short
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Figure 3.14.: Clock fault signal o, =
clk A clkg for shortening clock
cycles.

Figure 3.15.: Clock fault signal o3 = clk V
clks for stretching clock cycles.

(positive and negative) pulses with a width smaller than the min. 10ns provided by
the power fault module (cf.Sect.3.5.2) are available. This can be advantageous for
DUTs running at high frequencies. Nevertheless, the control over the waveform is less
sophisticated compared to the power fault module (e.g., with regard to voltage levels
and fast changes of the pulse width).

Let clk denote a clock signal, clk, this signal shifted by At, = logical inversion, A
logical AND and V logical OR. The outputs of the clock fault module are constructed as
given in Eqn. 3.1. All signals are illustrated in Fig. 3.14, Fig. 3.16, Fig. 3.15 and Fig. 3.17.

01 = clk A clk, (3.1)
09 = clk A clk,
o3 = clk V clk,
04 = clk V clk,

Implementation Details

The generation of the shifted clock signals clks is performed by the FPGA using a
combination of a fine phase shift, followed by clock (down-)scaling and a coarse phase
shift. The other needed signals (clk, clk, clk,) can be obtained by directly outputting
the (downscaled) clock and inverted versions of the appropriate signals, respectively.

As mentioned above, the fine shift is realised with the phase shift function of the
Xilinx DCM, which allows a clock to be shifted by ﬁth of the clock period. The input
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Figure 3.16.: Clock fault signal o, = clk A Figure 3.17.: Clock fault signal o, = clk V
clkg for short positive pulses. clk for short negative pulses.

to the DCM is the global system clock clksys, the output clksys, s (shifted by Agp.), both
running at 100 MHz.

clksys and clksys s are passed to a prescaler (and coarse phase shifter) implemented in
the VHDL component clock_divider, which toggles the output clock when an internal
counter reaches half of the configured prescaling factor. The coarse phase shift by A.oqrse
is accomplished by pre-loading the internal counter on startup. This way, clks can be
shifted in multiples of the system clock frequency, i.e., in steps of 10 ns, with respect to

clk.

Currently, the 100 MHz system clock frequency can only be divided by even factors
(without affecting the 50 % duty cycle?), allowing to realise the prescaler with essentially
one counter and one comparator. In order to enable the division by odd factors, a design
reacting to both the falling and rising clock edge is necessary, as described in [Boo|. The
downscaled clocks clk and clks (and their inverted counterparts) are then routed to
FPGA output pins connected to the actual fault module PCB. Fig. 3.18 summarises the
complete process.

For inducing a clock fault, the clock shall typically be modified once or a few times
and then return to its “normal” mode, i.e., 50 % duty cycle. Hence, the modification of
the phase shift (which controls the variation for 0; and o3 and the pulse width for oy
and oy, respectively) must be precisely timed within one or few (half-)clock cycles.

We apply the VHDL timing module described in Sect.3.5.1 to generate a pulse
waveform according to the desired fault timing. This signal is passed to the input
clock_shift_en of clock_generator, controlling whether a normal (clock_shift_en
= 0) or a faulted (clock_shift_en = 1) clock signal is generated. Note that the actual
clock for the DUT is present after the logical combination of clk and clk,. Hence, if these

9The duty cycle is the percentage of one period during which the signal is high
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Figure 3.18.: Clock signal shifting and prescaling on FPGA.

signals are in-phase, i.e., At = 0, a normal clock is generated. The modification only
is effective if At > 0, thus, changing the phase shift At of the FPGA outputs controls
whether the clock signal is faulted or not.

Directly dynamically modifying the phase shift generated by the DCM is not an option,
as it is a rather time-intensive task. The phase adjustment has to be performed in steps
of 2éﬁth of the clock period and moreover, each step can last up to 103 cycles before
becoming effective [Xil08b|. Therefore, we propose a different method, by multiplexing
- based on the clock_generator input clock_shift_en - the shifted clock outputs as

follows:

if clock_shift_en = ’1’ then
clock_out_shifted <= clk_div_shift;
clock_out_shifted_not <= not clk_div_shift;
else
clock_out_shifted <= ’07;
clock_out_shifted_not <= ’1°;
end if;

This assignment ensures that if clock_shift_en = 0, o; and o3 are unmodified,
prescaled clocks, while oy and o4 are constantly 0 and 1, respectively. This is equiv-
alent to setting At = 0, however, substantially reduces the FPGA logic overhead.

On the external board, the logical operations proposed above are performed by dis-
crete, high speed CMOS ICs. According to the datasheets [Pot09], these ICs can be
operated at frequencies above 1 GHz, enabling precise adjustment of the signal timing.
An example output signal for o; (i.e., a slightly shortened clock cycle) is depicted in
Fig. 3.19, with the prescaler set so that the output clock frequency is 16.67 MHz.
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Figure 3.19.: Clock fault on 16.67 MHz clock signal, x10 probe, 20 ns/time division.

For the case that the clock module is used to drive a larger load (the logic ICs can only
source 5 1 A), an output stage is included on the PCB, built basing on the Analog Devices
ADB8045 voltage feedback OP [Ana04], capable of supplying up to 55 mA. Currently, the
OP is configured as a buffer (i.e., with amplification of +1), however, additional pads
have been reserved in order to enable operation as a non-inverting amplifier. Refer to
Appendix C.3 for the complete schematic.

Figure 3.20.: 16.67 MHz clock signal after Figure 3.21.: 50 MHz clock signal after out-
output buffer, x10 probe. put buffer, x10 probe.

This enables the generation of voltages greater than 3.3 V, which is useful if the
clock fault module is employed to produce short pulses, i.e., when oy and o4 are used.
Example output signals of the buffer stage for clocks of 16.67 MHz and 50 MHz are
given in Fig. 3.20 and Fig. 3.21, demonstrating the ability to generate waveforms in the
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specified frequency range.

APl The configuration on the PC-side is performed by three methods that control the
prescaling factor and phase shift, as outlined in the following enumeration. The timing
of the fault is specified as for the voltage fault module, i.e., a pulse determining the
offset and the duration of the clock modification is configured using addPulse().

setPhase() Sets the ﬁng?phase shift in ﬁns steps, encoded as 8-bit integer, with a

maximum shift of 256 IS

setPhaseCoarse() Sets the coarse phase shift in FPGA clock cycles, i.e., 10 ns steps

setPrescaler() Specifies the division factor of the output clock, where only even factors
yield a 50 % duty cycle signal, as mentioned in Sect. 3.5.3.
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4. Practical Attacks

In this chapter, we demonstrate the capabilities of the developed framework by conduct-
ing some of the attacks described in Chap.2 on real devices. We begin with two key
recovery CPA attacks on different DUTs and continue with the injection of power faults
on a popular microcontroller.

4.1. Side-Channel Analysis

As a first step towards the analysis of real-world devices, a CPA on a software implemen-
tation of the AES on a microcontroller-based smartcard is performed. Next, we target
a real-world contactless smartcard featuring a 3DES hardware engine.

4.1.1. Microcontroller-based Smartcard

The microcontroller, an 8-bit Atmel Atmega 163 [Atm03], is embedded in a plastic
card. Its interface resembles that of secure smartcards, i.e., is ISO 7816-compliant,
yet, the controller is well-known to leak processed data. Its power consumption is highly
correlated to the Hamming weight of the processed data, making the device a reasonable
proof-of-concept and verification target for our framework, before proceeding with more
sophisticated attacks.

We target a known, unprotected, straightforward AES implementation and record
1000 power traces at a sample rate of 100 MSamples/s during the encyption of random,
uniformly distributed plaintexts with AES. To communicate with the DUT, we use the
smartcard reader introduced in Sect.3.3.1 to send the plaintext. The microcontroller
then performs the AES encryption and returns the ciphertext to the controlling PC.

The code on the microcontroller provides a trigger signal to start the measurement by
generating a short pulse on the data pin of the smartcard interface just before executing
the encryption'. The power consumption is acquired by inserting a small resistor into
the ground connection of the DUT using the smartcard adaptor introduced in Sec. 3.4.2.

!The pulse if sufficiently short so that it is not recognised as valid data by the reader but can be
detected by the Picoscope pulse width trigger
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The resistor value was adjusted so that the amplitude of the side-channel signal matches
the minimal input range of + 100mV of the oscilloscope.

We target the output of the AES S-Box in the first round and thus define a CPA
prediction function as the Hamming weight of the 8-bit S-Box result. AES is designed
to operate byte-wise, i.e., the first plaintext byte is xor’ed with the first subkey byte and
subsequently passed to the S-Box2. For further illustration, cf. Fig.2.1 and Alg. 5.

Fig. 4.1 shows the correlation coefficient as defined in Eqn. 2.2 for all 256 candidates
for the first byte of the subkey Kj. The horizontal lines at 4= 0.23 indicate the theoretical
noise level % (cf. IMOPO07|), where L is the number of traces. The correct (highlighted)
subkey is already clearly distinguishable after processing 300 traces. In subsequent
experiments, it turns out that 95 traces are sufficient so that the correct subkeys yields
the largest correlation in the region of interest (zoomed in Fig.4.2) and hence can be
identified. Using the presented framework, a full-key recovery, i.e., the recording and
evaluation of the traces can be performed within a few minutes.

Because the results are conclusive for the first byte (and because all other bytes are
processed analogical), we omit further evaluations to recover the other subkey bytes. As
mentioned above, this white-box attack® on the AES implementation primarily serves
as a preparative step for more challenging applications of the measurement environ-
ment. However, by successfully reproducing this straightforward side-channel attack,
we demonstrate and verify the functionality provided by the framework with respect to
side-channel analysis.
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Figure 4.2.: Correlation after L = 300
traces for first byte in first
round of AES, Hamming weight
(zoomed).

Figure 4.1.: Correlation after L = 300 traces
for first byte in first round of
AES, Hamming weight.

2AES uses the same S-Box throughout the whole encryption process
3We know the code of the software implementation and the appropriate leakage model for the micro-
controller
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4.1.2. Commercial Contactless Smartcard

In this section, we turn towards a more complex scenario and analyse a commercially
available contactless smartcard, extending our previous results [Osw08, KOP(09|. This
time, we are facing a black-box situation, i.e., do not know anything about the imple-
mentation of the cipher, existent countermeasures etc. Therefore, extensive profiling is
necessary in preparation for a key recovery attack.

The DUT is an ISO 14443-compliant RFID device [iso0la, iso01b|, operating at
13.56 MHz. The PICC features a challenge-response authentication protocol which re-
lies on a symmetric block cipher, involving a 112 bit key ko that is shared between the
PICC and the PCD. For the cipher, a 3DES using the two 56 bit halves of ko = ky||ks in
Encrypt-Decrypt-Encrypt mode according to |[FIPb| is implemented. After a successful
authentication, the subsequent communication is encrypted with a session key.

Since the smartcard IC is embedded in a plastic card and since — in contrast to
the previous section  the power is drawn from the field of the reader rather than
supplied via an electrical contact, direct measurements of the power consumption are
impossible without tampering with the DUT. Thus, in order to allow a non-invasive
analysis, we measure the EM field in proximity to the IC and perform a DEMA of the
3DES implementation. This process can be split up into the following steps, which we
will detail in this section:

1. Find a suitable trigger point.

2. Profile the device and locate the 3DES encryption.
3. Focus on one 3DES encryption.

4. Perform the EM analysis of the 3DES encryption.

Challenge-Response Authentication Protocol

Using the RFID reader mentioned in Sect. 3.3.2, we implement the whole authentication
protocol, but however, focus on the step relevant for our analyses as depicted in Fig. 4.3,
where 3DES;,. (-) = DES;, (DES;, (DESy, (+))) denotes a 3DES encryption involving
the key ko = ki||ko. The values By and B, have a length of 64 bit and are encrypted
by the PICC during the mutual authentication. B, originates from a random number
previously generated by the PICC and is always encrypted by the PICC in order to
check the authenticity of the PCD*. By, a random value chosen by the PCD that serves
for authenticating the PICC to the PCD, is mentioned here for completeness only and
is not required in the context of our analyses.

4The protocol will abort after the encryption of Bs, in case its verification is not successful.
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PCD PICC

By, B
Choose By, By b 3DES;,, (B>)

Figure 4.3.: Exerpt of the authentication protocol relevant for an attack.

By performing a full authentication and reproducing the responses® of the contactless
smartcard under attack on the PC, we verify that a standard (3)DES [FIPb| is used
for the encryption of the challenge according to Fig.4.3. We further observe that the
card unconditionally encrypts any value B, sent to it, hence we can freely choose the
plaintext.

For the CPA described in the following, we send random, uniformly distributed plain-
texts for By and attack the first DES round®. Note that it is not necessary to completely
power-down and reset the PICC after a failed authentication attempt. Instead, it is pos-
sible to send as many subsequent authentication enquiries as desired, thus avoiding the
need to perform the complete, time-consuming initialisation sequence specified in [iso01a]
for each trace. The trigger signal is provided by our custom reader, generating a falling
edge on an 1/0 pin after the last bit of the challenge has been transmitted to the PCD.

Requirements of a Full-Key Recovery for 3DES

The DUT supports both a DES and 3DES for encryption, hence — depending on the
selected mode — there exist certain implications with regard to the complexity of a full-
key recovery. In the case of a normal DES, revealing the subkey of the first round by
means of CPA yields 48 of the 56 key bits, so the remaining 8 bit can easily be found
by performing 2® trial authentications.

If a dual-key 3DES is employed, a successful CPA on the first round of the first DES
recovers 48 bit of the total 112-bit key. To recover the second key ko, a CPA can be
mounted on the second DES iteration, i.e., the decryption with k. As the input to this
operation has to be known, a complete recovery of the first key k; is necessary. However,
as mentioned, a CPA on the first round leaves 8 bit unknown.

Thus, there exist two alternatives for a full-key recovery: Either, 2% separate CPAs are
performed for the the 28 possible candidates for k,7, or the remaining 8 bit are retrieved

5Note that in this context the secret key of the implementation can be changed by us and is hence
known.

6 Attacking the final round is impossible in this context as the PICC never outputs the result of the
encryption of By

7Only one of these attacks has the correctly encrypted input data and hence shows significant corre-
lation peaks
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by performing an attack on the subsequent rounds of the first DES. The remaining 8 bit
of ko can then be exhaustively searched in both cases, similar to the case of a single
DES.

Trace Pre-Processing

We record traces between the last bit of the command sent by the reader and the
first bit of the answer of the card, both with and without the analogue pre-processing
filter introduced in Sec.3.4.2. However, in both cases the signals do not expose any
distinctive pattern, hence, additional digital pre-processing is applied in order to identify
interesting patterns useful for a precise alignment of the traces. On the basis of the
RFID power model introduced in [Osw08|, we assume that the power consumption of
the smartcard modulates the amplitude of the carrier signal at frequencies much lower
than the 13.56 MHz carrier frequency, which is justified by a preliminary spectral analysis
and the well-known fact that the on-chip components (such as capacitances, resistors,
inductances) typically imply a strong low-pass filter characteristic.
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Figure 4.4.: Raw trace of 3DES encryption Figure 4.5.: Raw trace of 3DES encryption
with analogue filter (zoomed). without analogue filter.
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Digital Amplitude Demodulation In order obtain the relevant side-channel infor-
mation, we record raw (undemodulated) traces and perform the demodulation digi-
tally, using the straightforward incoherent demodulation approach depicted in Fig. 4.6,
cf. [Sha06]|. The raw trace is first rectified, then low-passed filtered using an appropriate
digital filter. Next, an additional high-pass filter removes the constant amplitude offset
resulting from the demodulation principle and low-frequency noise. Suitable values for
the filter cutoff frequencies fioupass and frighpass are determined experimentally and given
in Sect.4.1.2.

Figure 4.4 displays a demodulated trace (fiowpass = 2MHz, frighpass = D0kHz) in
which distinct patterns are visible, especially two shapes at 240 us and 340 us, preceded
and followed by a number of equally spaced peaks. For comparision, Fig.4.7 shows a
zoomed part of the same trace without demodulation. Fig.4.8 and Fig. 4.5 originate
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Figure 4.6.: Block diagram of incoherent digital amplitude demodulator.

from a trace recorded without the analogue filter described and demonstrate that our
filter circuit effectively increases the amplitude of the signal of interest and reduces the
noise level of the demodulated signal.
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Figure 4.7.: Demodulated trace (50kHz - Figure 4.8.: Demodulated trace (50kHz -
2MHz) of 3DES encryption 2MHz) of 3DES encryption

with analogue filter. without analogue filter.

Trace Alignment

For precise alignment during the digital processing, we select a short reference pattern
in a demodulated reference trace. This pattern is then located in all subsequent traces
by finding the shift in time that minimises the squared difference between the reference

and the trace to align, i.e., we apply a least-squares approach.

For devices with a synchronous clock, the alignment with respect to one distinct
pattern is usually sufficient to align the whole trace. However, in our measurements we
found that the analysed smartcard performs the operations in an asynchronous manner,
i.e., the alignment may be wrong in portions not belonging to the reference pattern.
The alignment has thus to be performed with respect to the part of the trace we aim to
examine by means of CPA.

Having aligned the traces in time, further profiling of the DUT is mandatory before

attempting to recover the key. Therefore, we first identify the part of the power trace
during which the cryptographic operation takes place. Afterwards, the analysis of the
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actual encipherment process can be accomplished, revealing the suitable power model
and evaluating the level of protection provided by the DUT against side-channel attacks.

Locating the Data Bus Transfer of Plain- and Ciphertext

As the plaintext for the targeted 3DES operation is known and the ciphertext can be
computed in a known-key scenario, we are able to isolate the location of the 3DES
encryption by correlating on these values. From the profiling phase with a known key,
we assume that the smartcard uses an 8-bit data bus to transfer plain- and ciphertexts:
the corresponding values can be clearly identified from 2,000 - 5,000 traces using a
Hamming weight model, as depicted in Fig.4.9 and Fig. 4.10.

0.3]

Correlation Coefficient
Correlation Coefficient

| | | | I | | | | | | I | I
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Figure 4.9.: Correlation  coefficients  for Figure 4.10.: Correlation coefficients for ci-

plaintext bytes (before targeted phertext bytes (after targeted
3DES encryption) after 5,000 3DES encryption) after 2,000
traces, Hamming Weight. traces, Hamming Weight.

This first result suggests that the smartcard logic is implemented on a microcon-
troller which communicates with a separate 3DES hardware engine over a data bus
using precharged wires. This assumption is further supported by the fact that correla-
tion with the plaintext bytes can be observed twice, but with reversed byte order. The
microcontroller presumably first receives the plaintext bytes via the RFID RF frontend,
byte-reverses it and transmits it over the internal bus to the encryption engine. The
ciphertext is then sent back using the same byte order as for the second appearance of
the plaintext.

From these (and additional) profiling observations, Fig.4.11 was compiled, with the
shape of the 3DES operation marked. The first 3DES encryption (3DES 1) results from
a prior protocol step, the correlation with the correct ciphertext appears after the second
3DES shape only (labeled 3DES 2). We perform a CPA on the second 3DES, however,
note that one may also decide to attack the first 3DES.
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Figure 4.11.: Overview over operations in amplitude-demodulated trace.

DEMA of the 3DES Implementation

Having localised the interval of the 3DES operation from the position of the corre-
sponding plain- and ciphertexts, we now focus on this part of the trace. Figure4.12
shows a zoomed view of the targeted 3DES operation, filtered with fiopess = 8 MHz
and frighpass = 90 kHz. The short duration of the encryption suggests that the 3DES is
implemented in a special, separate hardware module, hence in the following we assume
a Hamming distance model®.
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Figure 4.12.: Part of trace with 3DES encryption, filtered with fioupass = 8 MHz,
fhz’ghpass = 50kHz.

Attack on First DES Iteration The three marked peaks in Fig. 4.12 seemingly appear
at the begin of one complete single DES and are thus promising candidates as alignment
patterns. Consequently, we conduct a CPA on demodulated traces aligned to each

8We also considered a Hamming weight model, however, did not reach conclusive results with it
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of these peaks, where we consider the Hamming distance between the DES registers
(Lo, Ry) and (Ly, Ry), i.e, the state before and after the first round of the first single
DES. More specifically, for each S-Box, we predict the Hamming distance between the
4 S-Box output bits at the positions after the DES permutation layer P (i.e., the output
of the first round) and the bits at the respective positions at the beginning of the first
round.

For the alignment to the first peak, correlation peaks with maximum amplitude for
the correct subkey candidate for all S-Boxes occur after 1,000,000 traces, as depicted
in Fig.4.13. The vertical lines mark the theoretical noise level iL, with L the number
of traces. Note that he suitable alignment pattern and the prediction function for the
CPA are experimentally determined in a semi-automatic manner. For this purpose, the
ability of our framework to quickly test many possible CPA settings using appropriate
configuration files turns out to heavily reduce the time required to find the correct
parameters.
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Figure 4.13.: Correlation coefficients for first DES, first round, after 1,000,000 traces,
flowpass - 8MHZ, fhighpass = 50 kHz.

We observe that 1. the correlation for the output of some S-Boxes is significantly
stronger than for others (e.g., for S-Box 1 and 3, for which the correct subkey can
already be identified after 150,000 traces), 2. several peaks appear at different points in
time for one S-Box and 3. the point of maximum correlation varies depending on the
S-Box.

As the attack works (albeit after a large number of traces), we conclude that no mask-
ing scheme [MOPO7] is used to protect the hardware engine. Rather than, we conjecture
that hiding in time dimension is used, e.g., dummy cycles with no computation taking
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place or similar measures might be inserted to prevent correct alignment of the traces.
This assumption is justified by the above observation that more than one peak occurs in
the correlation curve and further strengthened by the fact that when repeatedly sending
the same plaintext B to the smartcard, the shape of the DES operation and the position
of the peaks depicted in Fig. 4.12 vary®. This behaviour can also be observed when com-
pletely resetting the DUT by switching off the field of the reader between two identical
authentication attempts with the same plaintext By and a fixed timing, i.e., with pre-
cisely defined points in time at which each command is sent. Hence, the randomisation
of the computation does not seem to depend on parameters directly controllable by an
adversary, e.g., the timing of the authentication protocol.

With our measurement setup, recording one million traces takes approx. two days, i.e.,
we achieve a rate of approx. 700 measurements per minute. The subsequent evaluation
on a single high-end PC takes approx. one day. Having extensively profiled the DUT,
we are able to focus on the relevant region of the EM trace and thus achieve substantial
savings both with regard to disk space and processing time. Therefore, our attack is
still feasible in a practical scenario, despite the considerable amount of traces.

Attack on Second DES Iteration Having recovered 48 bit of the first half k; of the
key, we consequently attempt to attack the second iteration, i.e., the decryption part.
We do not explicitly address the problem of recovering the complete key for the first DES
iteration. We note that both approaches of Sect. 4.1.2 are feasible, even the exhaustive
search using 256 CPAs. Hence, we assume the first key half to be known and use it
in our experiments. Following the steps of the attack on the first iteration, the traces
are this time aligned to the second peak. The result displayed in Fig.4.14 is similar to
that of the previous section and allows to determine the correct subkey candidate for
all S-Boxes. Note that this time a smaller part of the traces is considered to reduce the
computation time.

From these results, we conclude that a full-key recovery on the given real-world con-
tactless smartcard is feasible. Having found the 3DES key, an adversary is for instance
able to eavesdrop and decrypt the communication between a legitimate reader and the
smartcard, read out and/or modify stored data, or create an cryptographically indistin-
guishable copy of the card. Depending on the key derivation scheme used in a concrete
application scenario, the recovery of the key of a single device can have a severe impact
on the security of the whole system, for instance, if the same symmetric key is used for
a certain group or for all cards. In that case, an adversary gains complete access to
all devices sharing the same key. Hence  considering the non-invasive full-key recovery
attack presented in this section — it is of special importance to ensure that each con-
tactless smartcard in a system shares a unique key with the reader by applying a secure
key-derivation mechanism.

9This misalignment also hinders improving the SNR. by means of averaging.
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Figure 4.14.: Correlation coefficients for second DES, first round, after 1,000,000 traces,
flowpass - 8MHZ, fhighpass = 50 kHz.

4.2. Fault Injection Attacks

After demonstrating the capabilities of the developed framework with regard to passive
side-channel analysis, we address active fault injection and accordingly carry out an
attack against a common 8-bit microcontroller, the PIC16F687 [Mic08]. For the follow-
ing experiments, we use a simple PCB containing the microcontroller and pin headers
connected to the supply voltage pin V.., the ground pin GN D, the reset pin and a feq
user-programmable inputs/outputs, e.g., to indicate the current status of the DUT. The
supply voltage V. is set to 4 V.

The microcontroller is clocked by its internal oscillator, at a frequency of fp;c =
8 MHz. According to the datasheet [Mic08|, one instruction cycle of length T; takes four
oscillator cycles, i.e., T; = 4 - Tprc = 500 ns, where Tp;c = ﬁ = 125ns. Most instruc-
tions are executed within a single instruction cycle, however, conditional instructions
and jumps such as goto require two cycles and hence take Ty, = 2-T; = 1 ps.

4.2.1. Single Faults

In this section, the main focus is on the demonstration of the basic feasibility of fault
injection techniques, not on the implementation of attacks against actual cryptographi-
cal algorithms. Consequently, we start with defining a simple test scenario, attempting
to skip one instruction executed by the microcontroller. The microcontroller executes a
simple program to detect that a fault has been successfully injected. After the initial-
ization, a rising edge is generated on PIN_TRIGGER, triggering the fault injection FPGA.
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Then, the status pin PIN_STATUS (connected to an FPGA input) is constantly set to
high in a first infinite loop. In a subsequent infinite loop, the same pin is pulled low and
additionally, another status pin PIN_STATUS_2 is constantly toggled, thereby indicating
whether the microcontroller is still alive.

main
; prepare: pin directions
banksel OUTTRIS
movlw b’00000000’
; all pins are outputs
movwf OUTTRIS

; set all outputs to O
banksel OUTPORT

movlw b’00000000’
movwf OUTPORT

; clear status pin
bcf OUTPORT, PIN_STATUS

; rising edge on trigger pin
bcf OUTPORT, PIN_TRIGGER
bsf OUTPORT, PIN_TRIGGER

; this loop is to be left using faults
loopl

bsf OUTPORT, PIN_STATUS

goto loopl

; second loop to catch successful exit from loopl
loop2
bcf OUTPORT, PIN_STATUS

; toggle pin

bcf OUTPORT, PIN_STATUS_2
nop

bsf OUTPORT, PIN_STATUS_2
nop

goto loop2

goto main
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Our attack targets the goto instruction at the end of the first loop. Without external
influence, the DUT never exits this loop. The aim of the fault attack is to jump over
this instruction, so that the second loop gets executed. This condition can be detected
by checking for PIN_STATUS = 0, indicating a successful fault injection. To provide a
second indicator that the DUT is definitely executing the second loop, the toggling of
PIN_STATUS_2 can be tested. Note that a goto instruction

Voltage
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offset t width

ow == e mr e mmnn-

i P Time
Trigger

Figure 4.15.: Parameters characterising a single negative power glitch.

We investigate the use of a negative voltage glitch, as this method has been reported to
be successful for other microcontrollers [KQ07, SHO8|. In our framework, the following
parameters (cf. Fig.4.15) can be varied:

e The glitch offset 7,7 rs¢ With respect to the trigger rising edge,
e the glitch width ¢4, and

e the glitch voltage level Vi,,, i.e., the value the supply voltage is reduced to tem-
porarily.

In order to systematically determine the settings that lead to the desired effect, we
implemented an application with a “sweep mode” that consecutively tests all combina-
tions in a certain range for each of the values. This way, the device is fully profiled
for all possible parameters without human interaction. To demonstrate the integration
of fault injection with the measurement framework and to be able to analyse the fault
effect afterwards, the application also records oscilloscope traces of the voltage glitch on
the supply rail and the state of the status pins.

Results Using the data gathered by the parameter sweep, three possible outcomes can
be observed:

1. Injection not successful, i.e., PIN_STATUS remains set and the first loop is not left,
see Fig. 4.17.
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2. The device is reset, resulting in PIN_STATUS to be set low for a short time (during
the initialization instructions) and then high again when the first loop is entered,
see Fig. 4.16.

3. The desired fault is injected, i.e., PIN_STATUS stays low permanently, indicating
that the microcontroller executes the second loop, see Fig.4.18. Tab.4.1 gives a
selection of parameters'? that lead to the desired fault effect.

‘/low (V) toffset (HS) twidth (IIS)
1.65 1230 2210
1.65 2730 2210
1.73 2430 1810
1.73 3930 1810

Table 4.1.: Selection of successful single fault injection parameters.

Figures4.17, 4.16 and 4.18 display example oscilloscope traces for each outcome. For
the case 3, Fig. 4.19 additionally shows the toggling waveform on PIN_STATUS_2 in loop2
after a successful instruction skip fault.
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Figure 4.16.: Waveform of reset after fault Figure 4.17.: Waveform of unsuccessful fault
injection on PIC16F687. injection on PIC16F687.

Based on these experiments, we conclude that power glitch attacks to skip instruction
on the PIC16F687 are possible. We identify three basic conditions for a successful fault
injection:

Glitch voltage The reduced voltage V},,, has to be within a region from 1.65V to 1.73 V.
For V.., <1.65V, the microcontroller is always reset. If V},, >1.73V, the power
glitch does not affect the operation of the device.

10Note that there are many other settings that also function properly but have been left out for read-
ability
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Figure 4.18.: Waveform of successful fault Figure 4.19.: Waveform of successful fault
injection on  PIC16F687, injection on  PIC16F687,
PIN_STATUS. PIN_STATUS_2.

Glitch offset The offset ¢, 5+ must be set such that the rising edge of the glitch (i.e.,
the point after which the device resumes normal operation) matches the end of one
goto instruction cycle. Hence, it is, e.g., possible to exit the loop with ¢, fse =2 s,
or in the subsequent iteration with ¢,fse = 3.5 us .

Glitch width The width of the glitch ¢,,,4, is at least one loop iteration, i.e., tyiqn > 1.5 us.
However, for certain voltage and offset combinations, the glitch may also be wider,
again given that the rising edge appears at the end of one goto instruction cycle.

4.2.2. Multiple Faults

On the basis of the results of the previous section, the scenario is now extended to
multiple fault injection. The first loop of the test code remains unchanged, while in the
second loop the toggling of PIN_STATUS_2 has been removed. The third loop catches the
successful exit from loopl and loop2, indicating this condition by setting PIN_STATUS_3
and toggling PIN_STATUS_2 as an additional criterion for loop3.

main
banksel OUTTRIS
movlw b’00000000°
; all pins are outputs
movwf OUTTRIS
; set all outputs to O
banksel OUTPORT
movlw b’00000000°
movwf OUTPORT

"The additional 0.5 us result from the bsf instruction in the loop body, thus, one complete iteration
(bsf + goto) takes 1.5 us
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bcf OUTPORT, PIN_STATUS

; rising edge on trigger pin
bcf OUTPORT, PIN_TRIGGER
bsf OUTPORT, PIN_TRIGGER

loopl
bsf OUTPORT, PIN_STATUS
goto loopl

; clear first status pin
bcf OUTPORT, PIN_STATUS
nop
nop

; second loop to catch successful exit from loopl

loop2
bsf OUTPORT, PIN_STATUS_2
goto loop2

; third loop to catch successful exit from loop2
loop3

bsf OUTPORT, PIN_STATUS_3

; toggle pin

bcf OUTPORT, PIN_STATUS_2

nop

bsf OUTPORT, PIN_STATUS_2

nop

goto loop3

goto main

Thus, if the first two loops can be skipped using two successive faults, this condition
is detected by checking for PIN_STATUS = 0 and PIN_STATUS_3 = 1, which can again
be accomplished automatically using the FPGA user 1/O pins. For illustration, we
recorded the waveform on PIN_STATUS_2, as the toggling provides visual evidence that
the microcontroller is indeed executing loop3. The two successive negative voltage
glitches are now characterised by 6 parameters, summarised in Fig. 4.20.

e The first glitch offset ¢, rsc¢,1 With respect to the trigger rising edge,
e the first glitch width t,an, 1,
e the first glitch voltage level Vy, 1,
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Figure 4.20.: Parameters characterising a double negative power glitch.

e the second glitch offset ?,ffset, 2 With respect to the end of the first glitch,
e the second glitch width ¢4, 2 and
e the second glitch voltage level Vi, 2.

To reduce the overhead for the search through all parameter combinations, the first
glitch is fixed based on a setting that led to a successful fault in the single fault scenario.
Moreover, the low voltage level is set equal for both glitches.
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Figure 4.21.: Waveform of successful multiple fault injection on PIC16F687,
PIN_STATUS_2.

Results By conducting a parameter sweep with the first pulse fixed, we were able to
skip both loopl and afterwards loop2, resulting in the waveform in Fig.4.21. Hav-
ing profiled the device, we could repeat the experiments with identical parameters and
reliably perform the fault injection, thereby achieving a success rate close to 100 %.

Table 4.2 provides settings that led to a successful multiple fault injection. Note that
we limited the sweep parameter range as stated above in order to reduce the search
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‘/low,l - ‘/low,Q toffset,l (IIS) twidth,l (HS) toffset,Q (HS) th’dth,? (IIS)
(V)

1.65 1230 2210 1930 2210

1.65 1230 2210 2130 2010

1.67 1230 2210 1730 2410

1.67 1230 2210 2130 2010

Table 4.2.: Selection of successful double fault injection parameters.

overhead. Generally, it can be assumed that there are far more settings that produce
similar results.

Since all tests can be carried out automatically with varying parameters, and the suc-
cess of the fault injection is automatically detected (the feedback via the data acquisition
module even allows to determine, e.g., whether a reset of the DUT needs to be triggered),
no human interaction is required. Thus, it is conceivable to perform a thorough profiling
and find the correct points in time for inducing faults even in a black-box scenario.

The results presented in this section show that voltage faults allow to skip single
and multiple instructions on a PIC microcontroller and thereby enable the modifica-
tion of the normal program flow. Thus, many of the attacks given in Chap.2 can be
realised, including combined implementation attacks, e.g., by skipping the initialisation
of a mask and performing a subsequent side-channel analysis. Due to the flexibility of
the developed framework, it is possible to automatically determine suitable parameters
for attacking a given implementation of a cryptographic algorithm, develop appropriate
countermeasures against fault injection attacks, and finally estimate their effectiveness.



5. Conclusion

We conclude this thesis by summarising the achievements of our work, putting special
emphasis on the flexibility and cost-effectiveness of the developed measurement and fault
injection framework. Finally, we point out future research directions that may base on
our setup and extend the practical results given in Chap. 4.

5.1. Summary

We give an overview of side-channel analysis and fault injection, providing a system-
atic list for the latter type of attack. By following a structured approach, we simplify
the estimation whether a given device may be vulnerable to fault injection and which
requirements have to be fulfilled for mounting a specific attack.

We present an adaptable and extensible framework for passive and active implemen-
tation attacks, not requiring expensive lab equipment: the complete setup can be built
for approx. 2500%, with a maximum measurement sample rate of 1 GSample/s and a
fault injection precision of 10ns. The framework can be used to put many theoretical
approaches into practice. The modular approach allows for quick realisation of new tech-
niques, particularly regarding different fault injection methods. As a proof-of-concept,
we provide two modules designed to generate voltage glitches and clock faults.

To verify the effectiveness of the framework, we conduct side-channel analyses on a
microcontroller-based AES software implementation and a commercial, widespread con-
tactless smartcard employing a 3DES hardware engine. In both cases, we were able to
recover the secret key and demonstrate the susceptibility to DPA and DEMA, respec-
tively.

Previous work suggests that the injection of multiple faults is difficult to realise with
low-cost equipment. Hence, countermeasures often only consider one fault during a
computation. We counter this common belief by describing our method to skip multiple
instructions on a popular microcontroller, using a setup that can be built by anyone
with sufficient knowledge.

All of our work is in the public domain, so that the practical evaluation of theoretical
attacks is simplified. The developed framework supports many different attacks proposed
in the literature and can furthermore be extended for future scenarios. We expect it to
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form the basis for new approaches in the field of implementation attacks, and, in this
regard, give some ideas in the following section to conclude this thesis.

5.2. Future Work

First of all, we plan to add new extension boards to support fault injection techniques
other than power glitches and variations of the clock. Currently, we develop appropriate
PCBs for EM sparks and optical effects, keeping the cost-efficiency in mind. Besides,
improvements of the fault injection hardware may also include the use of a different
FPGA to further increase the timing precision, or the incorporation of a Analogue-
Digital Converter (ADC) to enable dynamic triggering of the fault, depending on, e.g.,
a certain pattern in the power consumption of the DUT.

Besides, more practical results for fault attacks on real-world devices are needed to
overcome the lack of publicly available information in this regard. For RFID tags, where
the power is often supplied without direct contact, such attacks have been reported to
be effective at least for very constrained devices [HSP08]. It would be interesting to see
whether similar approaches are feasible in the case of contactless smartcards.

Finally, the combination of passive and active methods is an upcoming field of research
which renders many traditional countermeasures against either form of attack ineffective.
To be able to verify the effectiveness of new protection schemes and come up with solid
results, practical experiments have to be conducted, for which our framework provides
virtually all required capabilities.
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Algorithm 6 Bellcore fault attack on RSA with CRT.

Require: Public parameters e, n known
1

Ensure: Recover private key d = e™' mod ¢ (n)
1: Request signature on x and inject fault during first exponentiation: y « [c,q]y;, +

[cqp) y, mod n

2: Request signature on x without fault injection: y « [¢,q] yp + [cp] Yy, mod n
3: Compute y —y' = [¢q] (yp — ) mod n

4: Compute q «— ged ((y —y') ,n) = ged ([epq] (vp — ¥p) - P4)

5 p—

6: d+ e ! mod (p—1)(q—1)

7: return d

Algorithm 7 Lenstra fault attack on RSA with CRT.

Require: Public parameters e, n known
1

Ensure: Recover private key d = ¢! mod ¢ (n)

1: Request signature on x and inject fault during first exponentiation: y « [c,q]y;, +
[cgp] Yy mod n

Note: (y')° = [cup]y, = mod ¢ = (v)° = g+ x for some 3 € Z

Compute (/)" —x = Bq

Compute ¢ — ged ((y')° — x,n) = ged (B, pq)

n

b7
d—e' mod (p—1)(q—1)
return d
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Algorithm 8 Fault attack on RSA without CRT.

Require: Public parameter n known

Require: Length [ of binary representation of d known

Ensure: Recover one bit d; of private key d = e~
1:
2: Request signature on x and inject specified fault, targeting one bit of d : 3/ « x

10:
11:

12:
13:

1

d

Request valid signature on z: y «— 2 mod n

mod n

Compute ¢« ¢ -y~ mod n

for i —0...0—1do // Candidates for fault position
if ¢ == 2% mod n then
else if c ==z~
else

Fault did not occur at position 7
end if

end for

2 mod n then

return d;

mod ¢ (n)

d/
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Algorithm 9 Fault analysis of EC multiplication with faulty input point.

Require: Coefficients of E: aq, as, a3, a4, ag € F

Ensure: Recover the private key d € Z

1: while Equations for d do not allow for reconstruction using the CRT do

2:
3:

10:
11:
12:
13:

Choose point P on E randomly

Get ciphertext for P and inject a single-bit flip fault in the input P’ of the multi-
plication

Note: If P’ is not on E, the device outputs C' = (2, y) < d @ P’

Determine ag such that that C” satifies the curve equation:

ap — G+ Ty + asye — ' — axa's, — sl
if £’ defined by ay, as, as, a4, ag is a non-singular EC and E’ contains a small
subgroup of order r then // Check if DL problem has equivalent on weak curve
E/
for all possible candidates P’ with a single-bit fault do
if P’ lies on E’ then
Solve DL problem in the small subgroup: Given
M -d- P, compute d, =d mod r.
Add d, =d mod r to the list of equations
end if
end for
end if

ord(E’)P/ ord(E’)C/ _

14: end while
15: return d
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Algorithm 10 Fault analysis of EC with faults during the multiplication.

Require: Coefficients of E: aq, as, az, as, ag € F

Require: Binary length n of d

Ensure: Set of candidates D for the most significant bits d,, .. .d,_; of the private key

10:

11:

12:
13:
14:
15:
16:
17:

18:

d
List of candidates S « ()
Choose a point P on E
Get valid ciphertext for P: Q, « d- P
Get ciphertext for P and inject a single-bit flip, non-permanent fault in register ()
within the last m iterations: Q/, < d - P
Assume: Fault affected register Q; withn —m < j <n
Note: The actual value of j is not required
for i <~ n—m...n—1do // Candidate for first iteration i > j with d; = 1
for all x € {0, 1}"" do // Candidate for i most significant bits of d
Candidate for ng) given ¢ and x: ng) —Qp,—x-2"-P
for all )’ E‘T) that result from a single-bit fault in QZ(-‘T) do // Candidate for faulty
intermediate Q'
Use the guess x for the 7 most significant bits to compute ()’ 55” ), i.e., the faulty
ouput given x and ¢
if Q/ff) == (', then // Check simulated output
Add z as candidate for the ¢ most significant bits of d: D «— DU {(i, x)}
end if
end for
end for
end for
return D
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Algorithm 11 Differential fault analysis of final round of DES.

Require: DES permutations [P (-), Exp(-), P~ (-) and the S-Box layer S (-) formed

by S-Boxes S ... Ss, message z € {0, 1}**

Ensure: The set of possible subkey candidates IC for the S-Box affected by the single-bit

I~

10:
11:
12:

13:
14:

15:
16:

17:
18:

19:
20:

fault is reduced (i.e., || < 2%) and contains the correct subkey K if algorithm did
not output Failure

Encrypt message = € {0, 1}°*: y — DES ()

Encrypt message « € {0, 1}°* and inject specified fault: 3/ — DES’ (z)

(L1g; Big) < 1P (y)

(Lig, Rig) — 1P (Y)

Compute output differential and undo permutation: A,,; < P~ (R & Rlg)
Note: Ris © Rig = Lis © f(Rus, Kis) © Lis @ f' (Ris, Ki6) = [ (Ris, Ki) @
[ (Ris, Kig)

Find S-Box index ¢ affected by the fault by observing positions of 1s in A,

if A,y ==000...000 then // Check for zero differential

return Failure
end if
Subkey candidates for S-Box i: I «— {}
Get 6 bit inputs before key XOR for S-Box :
in < [Exp (Lie)]p; (i—1)%6...(i—1)%6+5
in' — [Exp (Lllﬁ)]bit (i—1)%6...(i—1)%6+5
for all 6 bit subkey candidates K ,,q for S-Box i do

Get S-Box outputs for this candidate:
out «— S; (in ® Kana)
out" — S; (in’ & Kana)
Get output differential: A ung = out ® out’
if Acond == [Dout) i (1= 1) (i—1)5443 then // Check if candidate yields valid output
differential
K — lC U {Kcand}
end if
end for
return
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Algorithm 12 Differential fault analysis of final round of AES.

Require: AES operations SubBytes (-) and ShiftRows™* (+)
Require: Function ShiftRowPos (j) yielding the position of byte j after Shift Rows (-)
Ensure: Recover the 128 bit subkey Ky byte-wise, whereas a single byte is obtained

1:
2:
3:

10:
11:
12:

13:

14:
15:
16:
17:
18:
19:
20:
21:
22:

with 97% success probability using 3 faulty ciphertexts. For the complete 16 byte
key, ~ 50 faulty ciphertexts are thus sufficient with high probability.

Get valid ciphertext: C' «— AES128 ()

for all byte j =0...15 do // Obtain My byte-wise
Set of candidates for byte j of My: iand —{0...255}
Get permuted position after final ShiftRows (-): j' < ShiftRowPos (j)
while ‘Mﬂand‘ # 1 do // Reduce candidate set for My
Get ciphertext and inject single-bit fault at byte j: C' «— AES128 (x)
Output differential: Ay «— C @ C’
if [AOUt]byte s == 0 then // Check if fault occured at correct byte
No fault at byte j: Continue on line 5
else
Set of candidates for byte j of M for this differential: M7 «— {}
for all possible single-bit faults e; € {0000001, 00000010, ..., 10000000} do

Get all candidates Mg that fulfil

[AOUt]byte = [SubBytes ([Mg] bote j) @ SubBytes ([Mg S ej} bote ]ﬂ

and store in set MJ'A’ej
Update candidates: MY, « M4 UM
end for -
Reduce set of overall candidates: M7 «— M/ 10 M
end if
end while
[Mo] — only candidate left in M
end for
Recover subkey: Ky« C & ShiftRows (SubBytes (My))

return K

J
byte j cand

byte j/
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Algorithm 13 Fault analysis of pre-whitening step of AES.

Require: Plaintext is constant 0: z < 000...000
Ensure: Recover the 128 bit subkey K bit-wise
1: Get valid ciphertext: C' «— AFES128(x)

2: for =0, 1, ..., 127 do // Scan through bits of K,
3:  Get ciphertext and inject fault, setting bit [ of Mj to 0: C" «+— AES128 ()

4: if ¢" == C then // bit | of Ky was 0 = fault had no impact
5 [Ko]bit 0

6: else // bitl of Ky was 1 = fault changed ciphertext

T (Kol — 1

8  end if

9: end for

10: return K,
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B. Framework Documentation

The information in this appendix is a summary of the Dozygen source-level documen-
tation for the framework. The complete documentation is provided in HTML format
along with the source code.

B.1. Class List

The following list contains the name and a short description for all relevant framework
classes. For more details, refer to the actual HTML documentation.

alignment Alignment processing block

alignment _ visitor Wrapper visitor class for state updates in processing chain
analysis _config Analysis configuration Storage for analysis settings

analysis _parameters

app Measurement app example: Sample class to demonstrate inheritance from mea-
surement__app

bandpass Bandpass processing block

binwise correlation _dpa< TAlgorithm > Manager class for several key hypotheses
in a binwise manner

binwise dpa candidate< TAlgorithm > Correlation coefficient for binwise DPA
bytewise distance< TResult > Bytewise hamming distance

channel config Channel settings Storage class for channel specific settings

comb Comb filter processing block

configurable Interface for configuration sub-objects

correlation dpa< TAlgorithm > Manager class for several key hypotheses
cut_trace Cut trace block Cut part of trace

dbgbuf Debug output stream

dbgstream Debug stream
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default trace load functor Default trace loader: Standard binary trace loader us-
ing first enabled channel in measurement config file

demodulator 13.56 MHz Demodulator and decoder

des oracle DES oracle with intermediates before and after each round
downsampler Downsampling by integer factor

dpa_app DPA App for CPA on 3DES smartcard

dpa_candidate< TAlgorithm > Correlation coefficient for standard pointwise DPA
dsp trace average Recursive timeseries average and variance estimator
dtw Dynamic time warping processing block

fault _config Fault fpga config Storage for fault FPGA config

fault fpga Fault injection VHDL control class

ffit FFT wrapper class

fir _filter FFT-based FIR filter

hamming distance< TResult > Standard hamming distance model
hamming weight< TResult > Hamming weight model

iir _hp IIR highpass (dc blocker) processing block

job Abstract base class for processing job

job__manager Class holding processing jobs

job__state Storage for job state attributes

keyboard Non-blocking keyboard access

measurement app Measurement framework: Framework class to inherit measurement
app from, provides useful basic functions for recording traces and injecting faults

measurement _config Config class for recording
mifare classic Class for Ultralight C commands
observable Base class for observable objects
observer Abstract base class for observers
PBase< T > Base class for type wrapping

peak dpa_config Configuration for peak extraction DPA: Storage for peak extraction
settings

peak extract Peak extraction app Peak extraction processing application

peak load functor Trace loader for peak DPA: Load peak values and position from
ascii file (as time value pairs) with optional prefiltering (only use minima/maxima)
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picoscope Picoscope interface class
power model< TResult > Abstract base class for power models

processing _app Trace processing framework class: Framework class to inherit process-
ing /evaluation app from, provides useful basic functions for processing traces and
DPA like attacks

processing _chain Container class for data processors

processing _config Configuration for processing Storage for analysis settings
psd Power spectral density Estimate psd using FFT

reader config RFID reader config

recording _config Config object for recording settings

rectifier Rectifier processing block

rfid _device RFID device base class

scope Abstract base class for all scopes

scope__config Scope settings: Storage class for scope specific settings
second order Second order DPA pre-processing block

signed distance< TResult > Signed distance model

trace Base class for trace file handling

trace agilent bin Agilent BinFormat trace class

trace ascii ASCII double values trace class

trace binary Binary format trace loading

trace display box Box widget to draw a trace onto

trace display window Class to display trace Bases on fltk, which is available as cyg-
win package

trace display window manager Manager class for trace windows Bases on fltk,
which is available as cygwin package

trace format parameters Trace format storage class

trace load functor Abstract base class for functor for trace loading

trace processor Abstract base class for in-place operator on timeseries data
trace processor visitable Interface for visitable processing chain elements

trace processor visitor Interface for visiting processing chain elements

trigger channel properties Settings for one channel: Storage class for properties

trigger config Trigger settings Storage class for trigger settings
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tripledes dpa_config Configuration for 3DES DPA: Storage for DPA settings
tripledes oracle 3DES oracle with values before and after each Single-DES
util Collection class for several utility functions

value locked< T > Locked thread-safe value wrapper

windowed psd Windowed power spectral density Spectral density based on (over-
lapped) windowed frames

B.2. Class Hierachy

As the framework is heavily employing inheritance, we give an overview over the in-
heritance structure of the above classes. Again, more information is available in the
complete Dozygen HTMIL documentation.

e analysis_config
e analysis parameters
e binwise correlation dpa< TAlgorithm >
e binwise dpa candidate< TAlgorithm >
e configurable
— channel config
— fault _config
— peak dpa_config
— reader_config
— recording_config
— scope__config
— trigger config
— tripledes dpa_config
e correlation dpa< TAlgorithm >
e dbgbuf
e des oracle base
— des_oracle
— tripledes oracle
e dpa candidate< TAlgorithm >

e dsp trace average
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e fault fpga
o fft
o fir filter
e job_state
e keyboard
e measurement app
— app
— demodulator
e measurement_ config
e observable
— job
— job_manager
e observer
— job_manager
e PBase< T >
e PBase< dbgbuf >
— dbgstream
e power model< TResult >
e power model< TResult >
— bytewise distance< TResult >
— hamming distance< TResult >
— hamming weight< TResult >
— signed distance< TResult >
e processing _app
— dpa_app
— peak extract
e processing config
e rfid device
e scope
— picoscope

e trace
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— trace_agilent bin

— trace ascii

trace binary

trace _display box

trace display window

trace _display _window manager

trace_format parameters

trace load functor

— default trace load functor

— peak load functor

trace processor visitable

— processing _chain

— trace_processor

*

*

*

*

*

*

*

alignment
bandpass
comb

cut_ trace
downsampler
dtw

iir _hp

psd

rectifier
second _order

windowed psd

trace processor visitor

— alignment_ visitor

— alignment_ visitor

— alignment_ visitor

trigger channel properties

util

value locked< T >
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